Skip to main content
Log in

Optimization of xanthan gum production using cheese whey and response surface methodology

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Cheese whey lactose was used as a carbon source for xanthan gum production with Xanthomonas campestris and Xanthomonas pelargonii. Proteins were precipitated and removed from whey prior to fermentation. Box-Behnken response surface methodology was used for optimization of the carbon, magnesium, and phosphate source concentrations in the culture medium to maximize xanthan gum production. After 48 h of fermentation using X. campestris, the highest xanthan concentration (16.4 g/L) was achieved at 65.2 g/L of cheese whey (39.1 g/L of lactose), 14.8 g/L of phosphate (K H2PO4), and 1.1 g/L of magnesium (MgSO4·7H2O). The corresponding optimum cheese whey, phosphate, and magnesium concentrations in cultures of X. pelargonii were 80.0, 6.7, and 0.8 g/L, respectively, which resulted in a xanthan production of 12.8 g/L. The xanthan gum yield (g of xanthan/g of lactose) was 0.42 for X. campestris and 0.27 for X. pelargonii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yoo SD, Harcum SW. Xanthan gum production from waste sugar beet pulp. Bioresource Technol. 70: 105–109 (1999)

    Article  CAS  Google Scholar 

  2. Garcia-Ochoa F, Santos VE, Casas JA, Gomez E. Xanthan gum: Production, recovery, and properties. Biotechnol. Adv. 18: 549–579 (2000)

    Article  CAS  Google Scholar 

  3. Rosalam S, England R. Review of xanthan gum production from unmodified starches by Xanthomonas campestris sp. Enzyme Microb. Tech. 39: 197–207 (2006)

    Article  CAS  Google Scholar 

  4. Silva MF, Fornari RCG, Mazutti MA, de Oliveira D, Padilha FF, Cichoski AJ, Cansian RL, Luccio MD, Treichel H. Production and characterization of xanthan gum by Xanthomonas campestris using cheese whey as sole carbon source. J. Food Eng. 90: 119–123 (2009)

    Article  CAS  Google Scholar 

  5. Funahashi H, Yoshida T, Taguchi H. Effect of glucose concentration on xanthan gum production by Xanthomonas campestris. J. Ferment. Technol. 65: 603–606 (1987)

    Article  CAS  Google Scholar 

  6. Waites MJ, Morgan NL, Rockey JS, Higton G. Industrial Microbiology: An Introduction. Blackwell, Oxford, UK. pp. 161–163 (2001)

    Google Scholar 

  7. Ben Salah R, Chaari K, Besbes S, Ktari N, Blecker C, Deroanne C, Attia H. Optimization of xanthan gum production by palm date (Phoenix dactylifera L.) juice by-products using response surface methodology. Food Chem. 121: 627–633 (2010)

    Article  Google Scholar 

  8. Moosavi-Nasab M, Shekaripour F, Alipoor M. Use of date syrup as agricultural waste for xanthan production by Xanthomonas campestris. Iran Agric. Res. 27: 89–98 (2009)

    Google Scholar 

  9. Faria S, Vieira PA, Resende MM, Ribeiro EJ, Cardoso VL. Application of a model using the phenomenological approach for prediction of growth and xanthan gum production with sugarcane broth in a batch process. LWT-Food Sci. Technol. 43: 498–506 (2010)

    Article  CAS  Google Scholar 

  10. Borges CD, da Moreira AS, Vendrusco CT, Ayub MA. Influence of agitation and aeration in xanthan production by Xanthomonas campestris pv pruni strain 101. Rev. Argent. Microbiol. 40: 81–85 (2008)

    CAS  Google Scholar 

  11. Mirik M, Demirci AS, Gumus T, Arici M. Xanthan gum production under different operational conditions by Xanthomonas axonopodis pv vesicatoria isolated from pepper plant. Food Sci. Biotechnol. 20: 1243–1247 (2011)

    Article  CAS  Google Scholar 

  12. Abd El-Salam MH, Fadel MA, Murad HA. Bioconversion of sugarcane molasses into xanthan gum. J. Biotechnol. 33: 103–106 (1994)

    Article  CAS  Google Scholar 

  13. Kalogiannis S, Iakovidou G, Liakopoulou KM, Kyriakidis DA, Skaracis GN. Optimization of xanthan gum production by Xanthomonas campestris grown in molasses. Process Biochem. 39: 249–256 (2003)

    Article  CAS  Google Scholar 

  14. Moosavi A, Karbassi A. Bioconversion of sugar-beet molasses into xanthan gum. J. Food Process. Pres. 34: 316–322 (2010)

    Article  CAS  Google Scholar 

  15. Moshaf S, Hamidi-Esfahani Z, Azizi MH. Optimization of conditions for xanthan gum production from waste date in submerged fermentation. World Acad. Sci. Eng. Technol. 5: 433–436 (2011)

    Google Scholar 

  16. Bilanovic D, Shelef G, Green M. Xanthan fermentation of citrus waste. Bioresource Technol. 48: 169–172 (1994)

    Article  CAS  Google Scholar 

  17. López MJ, Moreno J, Ramos-Cormenzana A. The effect of olive mill wastewaters variability on xanthan production. J. Appl. Microbiol. 90: 829–835 (2001)

    Article  Google Scholar 

  18. Moreno J, López MJ, Vargas-Garcia C, Vazquez R. Use of agricultural wastes for xanthan production by Xanthomonas campestris. J. Ind. Microbiol. Biotechnol. 21: 242–246 (1998)

    Article  CAS  Google Scholar 

  19. Bilanovic D, Chang FH, Isobaev P, Welle P. Lactic acid and xanthan fermentations on an alternative potato residues media-Carbon source costs. Biomass Bioenergy 35: 2683–2689 (2011)

    Article  CAS  Google Scholar 

  20. Prazeres AR, Carvalho F, Rivas J. Cheese whey management: A review. J. Environ. Manage. 110: 48–68 (2012)

    Article  CAS  Google Scholar 

  21. Siso MIG. The biotechnological utilization of cheese whey: A review. Bioresource Technol. 57: 1–11 (1996)

    Article  Google Scholar 

  22. Guven G, Perendeci A, Tanyolac A. Electrochemical treatment of deproteinated whey wastewater and optimization of treatment conditions with response surface methodology. J. Hazard. Mater. 157: 69–78 (2008)

    Article  Google Scholar 

  23. Spachos T, Stamatis A. Thermal analysis and optimization of an anaerobic treatment system of whey. Renew. Energ. 36: 2097–2105 (2011)

    Article  Google Scholar 

  24. Joshi S, Bharucha C, Jha S, Yadav S, Nerurkar A, Desai AJ. Biosurfactant production using molasses and whey under thermophilic conditions. Bioresource Technol. 99: 195–199 (2008)

    Article  CAS  Google Scholar 

  25. Leela JK, Sharma G. Studies on xanthan production from Xanthomonas campestris. Bioprocess Eng. 23: 687–689 (2000)

    Article  Google Scholar 

  26. Psomas SK, Liakopoulou-Kyriakides M, Kyriakidis DA. Optimization study of xanthan gum production using response surface methodology. Biochem. Eng. J. 35: 273–280 (2007)

    Article  CAS  Google Scholar 

  27. Box GEP, Behnken DW. Some new three level designs for the study of quantitative variables. Technometrics 2: 455–475 (1960)

    Article  Google Scholar 

  28. Souw P, Demain AL. Nutritional studies on xanthan production by Xanthomonas campestris NRRL B1459. Appl. Environ. Microb. 37: 1186–1192 (1979)

    CAS  Google Scholar 

  29. Umashankar H, Annadurai G, Chellapandian M, Krishnan MRV. Influence of nutrients on cell growth and xanthan production by Xanthomonas campestris. Bioprocess Eng. 14: 307–309 (1996)

    Article  CAS  Google Scholar 

  30. Davidson IW. Production of polysaccharide by Xanthomonas campestris in continuous culture. FEMS Microbiol. Lett. 3: 347–349 (1978)

    Article  CAS  Google Scholar 

  31. El Enshasy H, Then C, Othman NZ, Al Homosany H, Sabry M, Sarmidi MR, Aziz RA. Enhanced xanthan production process in shake flasks and pilot scale bioreactors using industrial semidefined medium. Afr. J. Biotechnol. 10: 1029–1038 (2011)

    Google Scholar 

  32. Savvides AL, Katsifas EA, Hatzinikolaou DG, Karagouni AD. Xanthan production by Xanthomonas campestris using whey permeate medium. World J. Microbiol. Biot. 28: 2759–2764 (2012)

    Article  CAS  Google Scholar 

  33. Antony J. Design of Experiments for Engineers and Scientists. Butterworth-Heinemann, New York, NY, USA. pp. 18–40 (2003)

    Google Scholar 

  34. Montgomery DC. Design and Analysis of Experiments. 7th ed., John Wiley & Sons, New York, NY, USA. pp. 392–416 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Asadollahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niknezhad, S.V., Asadollahi, M.A., Zamani, A. et al. Optimization of xanthan gum production using cheese whey and response surface methodology. Food Sci Biotechnol 24, 453–460 (2015). https://doi.org/10.1007/s10068-015-0060-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0060-9

Keywords

Navigation