Skip to main content
Log in

Physicochemical properties and volatile components of wine vinegars with high acidity based on fermentation stage and initial alcohol concentration

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

High acidity vinegar using grape concentrate was manufactured by fed-batch fermentation without additional chemical nutrients. Physicochemical properties and volatile components were investigated at different wine vinegar fermentation stages (stages 1–4) and at different initial alcohol concentrations (IAC, 6–9%). Acetic acid production showed a high yield and a rapid increase with an IAC=6%. The contents of reducing sugar, free amino acids, total phenolics, and overall volatiles increased during stage 4 (high acidity vinegar) most likely due to addition of a feeding solution. High acidity vinegar produced using a fed-batch culture at an IAC of 6% is a source of functional constituents with improved physicochemical and volatile properties, compared to moderate acidity vinegar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams MR. Vinegar. pp. 1–44. In: Microbiology of Fermented Food. Wood JB (ed) Blackie Academic and Professional, London, UK (1998)

    Chapter  Google Scholar 

  2. Lee YC, Lee JH. A manufacturing process of high-strength vinegars. Food Ind. Nutr. 5: 13–17 (2000)

    Google Scholar 

  3. Romeo J, Scheraga M, Umbreit WW. Stimulation of the growth and respiration of a methylotrophic bacterium by morphine. Appl. Environ. Microb. 34: 611–614 (1977)

    CAS  Google Scholar 

  4. Lee YC, Lee YG, Kim HC, Park KB, Yoo YJ, Ahn PU, Cho CU, Son SH. Production high acetic acid vinegar using two stage fermentation. Korean J. Microbiol. Biotechnol. 20: 663–667 (1992)

    CAS  Google Scholar 

  5. Luchsinger WW, Cornesky RA. Reducing power by the dinitrosalicylic acid method. Anal. Biochem. 4: 346–347 (1962)

    Article  CAS  Google Scholar 

  6. Park MH, Lyu DK, Ryu CH. Characteristics of high acidity producing acetic acid bacteria isolated from industrial vinegar fermentation. J. Korean Soc. Food Sci. Nutr. 31: 394–398 (2002)

    Article  CAS  Google Scholar 

  7. Park KS, Chang DS, Cho HR, Park YU. Investigation of the cultural characteristics of high concentration ethanol resistant Acetobacter sp. J. Korean Soc. Food Sci. Nutr. 23: 666–670 (1994)

    CAS  Google Scholar 

  8. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428 (1959)

    Article  CAS  Google Scholar 

  9. Singleton VL, Rossi Jr. JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16: 144–158 (1965)

    CAS  Google Scholar 

  10. Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555–559 (1999)

    Article  CAS  Google Scholar 

  11. Zou Y, Lu Y, Wei D. Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro. J. Agr. Food Chem. 52: 5032–5039 (2004)

    Article  CAS  Google Scholar 

  12. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199–1200 (1958)

    Article  CAS  Google Scholar 

  13. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231–1237 (1999)

    Article  CAS  Google Scholar 

  14. Castro Mejıìas R, Natera Marıìn R, de Valme Garcıìa Moreno M, Garcıìa Barroso C. Optimisation of headspace solid-phase microextraction for analysis of aromatic compounds in vinegar. J. Chromatogr. A 953: 7–15 (2002)

    Article  Google Scholar 

  15. Qi Z, Yang H, Xia X, Xin Y, Zhang L, Wang W, Yu X. A protocol for optimization vinegar fermentation according to the ratio of oxygen consumption versus acid yield. J. Food Eng. 116: 304–309 (2013)

    Article  CAS  Google Scholar 

  16. Hong SM, Kang MJ, Lee JH, Jeong JH, Kwon SH, Seo KI. Production of vinegar using Rubus coreanus and its antioxidant activities. Korean J. Food Preserv. 19: 594–603 (2012)

    Article  Google Scholar 

  17. Ko EJ, Her SS, Choi YH. The establishment of optimum cultural conditions for manufacturing garlic vinegar. J. Korean Soc. Food Sci. Nutr. 27: 102–108 (1998)

    Google Scholar 

  18. Horiuchi JI, Kanno T, Kobayashi M. New vinegar production from onions. J. Biosci. Bioeng. 88: 107–109 (1999)

    Article  CAS  Google Scholar 

  19. Alonso AM, Castro R, Rodriguez MC, Guillén DA, Barroso CG. Study of the antioxidant power of brandies and vinegars derived from Sherry wines and correlation with their content in polyphenols. Food Res. Int. 37: 715–721 (2004)

    Article  CAS  Google Scholar 

  20. Su MS, Silva JL. Antioxidant activity, anthocyanins, and phenolics of rabbiteye blueberry (Vaccinium ashei) by-products as affected by fermentation. Food Chem. 97: 447–451 (2006)

    Article  CAS  Google Scholar 

  21. Andlauer W, Stumpf C, Fürst P. Influence of the acetification process on phenolic compounds. J. Agr. Food Chem. 48: 3533–3536 (2000)

    Article  CAS  Google Scholar 

  22. Verzelloni E, Tagliazucchi D, Conte A. Relationship between the antioxidant properties and the phenolic and flavonoid content in traditional balsamic vinegar. Food Chem. 105: 564–571 (2007)

    Article  CAS  Google Scholar 

  23. Ubeda C, Callejón RM, Hidalgo C, Torija MJ, Troncoso AM, Morales ML. Employment of different processes for the production of strawberry vinegars: Effects on antioxidant activity, total phenols, and monomeric anthocyanins. LWT-Food Sci. Technol. 52: 139–145 (2013)

    Article  CAS  Google Scholar 

  24. Simonetti P, Pietta P, Testolin G. Polyphenol content and total antioxidant potential of selected Italian wines. J. Agr. Food Chem. 45: 1152–1155 (1997)

    Article  CAS  Google Scholar 

  25. Bors W, Heller W, Michel C, Saran M. Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. Method. Enzymol. 186: 343–355 (1990)

    Article  CAS  Google Scholar 

  26. Bors W, Michel C, Stettmaier K. Antioxidant effects of flavonoids. Biofactors 6: 399–402 (1997)

    Article  CAS  Google Scholar 

  27. Larrauri JA, Ruperez P, Calixto FS. Antioxidant activity of wine pomace. Am. J. Enol. Viticult. 47: 369–372 (1996)

    CAS  Google Scholar 

  28. Baumes R, Cordonnier R, Nitz S, Drawert F. Identification and determination of volatile constituents in wines from different vine cultivars. J. Sci. Food Agr. 37: 927–943 (1986)

    Article  CAS  Google Scholar 

  29. Suomalainen H, Lehtonen M. The production of aroma compounds by yeast. J. I. Brewing 85: 149–156 (1979)

    Article  CAS  Google Scholar 

  30. Callejón RM, Tesfaye W, Torija MJ, Mas A, Troncoso AM, Morales ML. Volatile compounds in red wine vinegars obtained by submerged and surface acetification in different woods. Food Chem. 113: 1252–1259 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong-Ho Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, Y., Baek, JY., Jeong, IY. et al. Physicochemical properties and volatile components of wine vinegars with high acidity based on fermentation stage and initial alcohol concentration. Food Sci Biotechnol 24, 445–452 (2015). https://doi.org/10.1007/s10068-015-0059-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0059-2

Keywords

Navigation