Sulforaphane inhibited tumor necrosis factor-α induced migration and invasion in estrogen receptor negative human breast cancer cells


Sulforaphane significantly (p<0.05) inhibited tumor necrosis factor (TNF)-α induced cellular migration and invasion in human breast cancer cells, compared with controls. mRNA and protein expressions of MMPs, including MMP-2, MMP-9, and MMP-13, and the enzymatic activities of MMP-2 and MMP-9 were suppressed by sulforaphane treatments at 1, 5, and 10 μM concentration in cells. Sulforaphane should be considered as a potent agent for retardation of mammary tumorigenesis.

This is a preview of subscription content, log in to check access.


  1. 1.

    Abdull Razis AF, Noor NM. Cruciferous vegetables: Dietary phytochemicals for cancer prevention. Asian Pac. J. Cancer Prev. 14: 1565–1570 (2013)

    Article  Google Scholar 

  2. 2.

    Houghton CA, Fassett RG, Coombes JS. Sulforaphane: Translational research from laboratory bench to clinic. Nutr. Rev. 71: 709–726 (2013)

    Article  Google Scholar 

  3. 3.

    Chiao JW, Chung FL, Kancherla R, Ahmed T, Mittelman A, Conaway CC. Sulforaphane and its metabolite mediate growth arrest and apoptosis in human prostate cancer cells. Int. J. Oncol. 20: 631–636 (2002)

    CAS  Google Scholar 

  4. 4.

    Srivastava SK, Xiao D, Lew KL, Hershberger P, Kokkinakis DM, Johnson CS, Trump DL, Singh SV. Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits growth of PC-3 human prostate cancer xenografts in vivo. Carcinogenesis 24: 1665–1670 (2003)

    CAS  Article  Google Scholar 

  5. 5.

    Parnaud G, Li P, Cassar G, Rouimi P, Tulliez J, Combaret L, Gamet-Payrastre L. Mechanism of sulforaphane-induced cell cycle arrest and apoptosis in human colon cancer cells. Nutr. Cancer 48: 198–206 (2004)

    CAS  Article  Google Scholar 

  6. 6.

    Lee YR, Noh EM, Han JH, Kim JM, Hwang BM, Kim BS, Lee SH, Jung SH, Youn HJ, Chung EY, Kim JS. Sulforaphane controls TPA-induced MMP-9 expression through the NF-kappaB signaling pathway, but not AP-1, in MCF-7 breast cancer cells. BMB Rep. 46: 201–206 (2013)

    CAS  Article  Google Scholar 

  7. 7.

    Hunakova L, Sedlakova O, Cholujova D, Gronesova P, Duraj J, Sedlak J. Modulation of markers associated with aggressive phenotype in MDA-MB-231 breast carcinoma cells by sulforaphane. Neoplasma 56: 548–556 (2009)

    CAS  Article  Google Scholar 

  8. 8.

    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J. Clin. 61: 69–90 (2011)

    Article  Google Scholar 

  9. 9.

    Friedel G, Pastorino U, Ginsberg RJ, Goldstraw P, Johnston M, Pass H, Putnam JB, Toomes H, International Registry of Lung Metastases LE. Results of lung metastasectomy from breast cancer: Prognostic criteria on the basis of 467 cases of the International Registry of Lung Metastases. Eur. J. Cardio-thorac. 22: 335–344 (2002)

    Article  Google Scholar 

  10. 10.

    Crawford HC, Matrisian LM. Mechanisms controlling the transcription of matrix metalloproteinase genes in normal and neoplastic cells. Enzyme Protein 49: 20–37 (1996)

    CAS  Google Scholar 

  11. 11.

    Chambers AF, Matrisian LM. Changing views of the role of matrix metalloproteinases in metastasis. J. Natl. Cancer Inst. 89: 1260–1270 (1997)

    CAS  Article  Google Scholar 

  12. 12.

    Balkwill F. Tumor necrosis factor or tumor promoting factor? Cytokine Growth F. R. 13: 135–141 (2002)

    CAS  Article  Google Scholar 

  13. 13.

    Bao C, Namgung H, Lee J, Park HC, Ko J, Moon H, Ko HW, Lee HJ. Daidzein Suppresses Tumor Necrosis Factor-alpha Induced Migration and Invasion by Inhibiting Hedgehog/Gli1 Signaling in Human Breast Cancer Cells. J. Agr. Food Chem. 62: 3759–3767 (2014)

    CAS  Article  Google Scholar 

  14. 14.

    Miller FR, Santner SJ, Tait L, Dawson PJ. xenograft model of human comedo ductal carcinoma in situ. J. Natl. Cancer Inst. 92: 1185–1186 (2000)

    CAS  Article  Google Scholar 

  15. 15.

    Wahler J, So JY, Kim YC, Liu F, Maehr H, Uskokovic M, Suh N. Inhibition of the Transition of Ductal Carcinoma In Situ to Invasive Ductal Carcinoma by a Gemini Vitamin D Analog. Cancer Prev. Res. 7: 617–626 (2014)

    CAS  Article  Google Scholar 

  16. 16.

    Ni X, Xia T, Zhao Y, Zhou W, Wu N, Liu X, Ding Q, Zha X, Sha J, Wang S. Downregulation of miR-106b induced breast cancer cell invasion and motility in association with overexpression of matrix metalloproteinase 2. Cancer Sci. 105: 18–25 (2014)

    CAS  Article  Google Scholar 

  17. 17.

    Wu ZS, Wu Q, Yang JH, Wang HQ, Ding XD, Yang F, Xu XC. Prognostic significance of MMP-9 and TIMP-1 serum and tissue expression in breast cancer. Int. J. Cancer 122: 2050–2056 (2008)

    CAS  Article  Google Scholar 

  18. 18.

    Zhang B, Cao X, Liu Y, Cao W, Zhang F, Zhang S, Li H, Ning L, Fu L, Niu Y, Niu R, Sun B, Hao X. Tumor-derived matrix metalloproteinase-13 (MMP-13) correlates with poor prognoses of invasive breast cancer. BMC Cancer 8: 83 (2008)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hong Jin Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bao, C., Ko, J., Park, H. et al. Sulforaphane inhibited tumor necrosis factor-α induced migration and invasion in estrogen receptor negative human breast cancer cells. Food Sci Biotechnol 24, 347–351 (2015).

Download citation


  • breast cancer
  • invasion
  • matrix metalloproteinase
  • migration
  • sulforaphane