Skip to main content
Log in

Antioxidative, hypolipidemic, and anti-inflammatory activities of sulfated polysaccharides from Monostroma nitidum

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Polysaccharides from seaweed have different biological activities. Two types of sulfated polysaccharides (SPs) were purified from Monostroma nitidum (MF1 and MF2) and investigated for biological activities in vitro. The MF1 and MF2 fractions exhibited strong antioxidant activities assessed using superoxide dismutase (SOD) assays. Stimulation of lipid-loaded hepatocytes by the MF1 and MF2 fractions significantly (p<0.05) reduced cellular lipid concentrations, compared with controls. Quantitative PCR analysis revealed that reductions in cellular lipid concentrations accompanied reduced expressions of cholesterol synthesis genes, and induced gene expressions for cholesterol degradation, LDL uptake, and peroxisomal β-oxidation. Gene expressions related to inflammation, including inducible NO synthase (iNOS), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and visfatin, were suppressed in lipid-loaded hepatocytes stimulated with MF1 and MF2. SPs from M. nitidum exhibited hypolipidemic and anti-inflammatory activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angulo P. Nonalcoholic fatty liver disease. New Engl. J. Med. 346: 1221–1231 (2002)

    Article  CAS  Google Scholar 

  2. Marchesini G, Moscatiello S, Di Domizio S, Forlani G. Obesity-associated liver disease. J. Clin. Endocr. Metab. 93: S74–S80 (2008)

    Article  CAS  Google Scholar 

  3. Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK, Luketic VA, Shiffman ML, Clore JN. Nonalcoholic steatohepatitis: Association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120: 1183–1192 (2001)

    Article  CAS  Google Scholar 

  4. Maheshwari A, Thuluvath PJ. Endocrine diseases and the liver. Clin. Liver Dis. 15: 55–67 (2011)

    Article  Google Scholar 

  5. Brown TM. Nonalcoholic fatty liver disease and cardiovascular disease risk. Clin. Gastroenterol. H. 10: 568–569 (2012)

    Article  Google Scholar 

  6. Klein-Platat C, Drai J, Oujaa M, Schlienger JL, Simon C. Plasma fatty acid composition is associated with the metabolic syndrome and low-grade inflammation in overweight adolescents. Am. J. Clin. Nutr. 82: 1178–1184 (2005)

    CAS  Google Scholar 

  7. Kim SK, Li YX. Medicinal benefits of sulfated polysaccharides from sea vegetables. Adv. Food Nutr. Res. 64: 391–402 (2011)

    Article  CAS  Google Scholar 

  8. Schipper NG, Olsson S, Hoogstraate JA, deBoer AG, Varum KM, Artursson P. Chitosans as absorption enhancers for poorly absorbable drugs 2: mechanism of absorption enhancement. Pharm. Res. 14: 923–929 (1997)

    Article  CAS  Google Scholar 

  9. Pengzhan Y, Ning L, Xiguang L, Gefei Z, Quanbin Z, Pengcheng L. Antihyperlipidemic effects of different molecular weight sulfated polysaccharides from Ulva pertusa (Chlorophyta). Pharmacol. Res. 48: 543–549 (2003)

    Article  Google Scholar 

  10. Saeid A, Chojnacka K, Korczynski M, Korniewicz D, Dobrzanski Z. Biomass of enriched by biosorption process as a new feed supplement for swine. J. Appl. Phycol. 25: 667–675 (2013)

    Article  CAS  Google Scholar 

  11. Lahaye M, Robic A. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8: 1765–1774 (2007)

    Article  CAS  Google Scholar 

  12. Misurcova L, Skrovankova S, Samek D, Ambrozova J, Machu L. Health benefits of algal polysaccharides in human nutrition. Adv. Food. Nutr. Res. 66: 75–145 (2012)

    Article  CAS  Google Scholar 

  13. Kitano Y, Murazumi K, Duan J, Kurose K, Kobayashi S, Sugawara T, Hirata T. Effect of dietary porphyran from the red alga, Porphyra yezoensis, on glucose metabolism in diabetic KK-Ay mice. J. Nutr. Sci. Vitaminol. 58: 14–19 (2012)

    Article  CAS  Google Scholar 

  14. Inoue N, Yamano N, Sakata K, Nagao K, Hama Y, Yanagita T. The sulfated polysaccharide porphyran reduces apolipoprotein B100 secretion and lipid synthesis in HepG2 cells. Biosci. Biotech. Bioch. 73: 447–449 (2009)

    Article  CAS  Google Scholar 

  15. Hoang MH, Jia Y, Jun HJ, Lee JH, Hwang KY, Choi DW, Um SJ, Lee BY, You SG, Lee SJ. Taurine is a liver X receptor-α ligand and activates transcription of key genes in the reverse cholesterol transport without inducing hepatic lipogenesis. Mol. Nutr. Food Res. 56: 900–911 (2012)

    Article  CAS  Google Scholar 

  16. Wong KH, Sam SW, Cheung PCK, Ang Jr. PO. Changes in lipid profiles of rats fed with seeeweed-based diets. Nutr. Res. 19: 1519–1527 (1999)

    Article  CAS  Google Scholar 

  17. Hoang MH, Jia Y, Jun HJ, Lee JH, Lee BY, Lee SJ. Fucosterol is a selective liver X receptor modulator that regulates the expression of key genes in cholesterol homeostasis in macrophages, hepatocytes, and intestinal cells. J. Agr. Food. Chem. 60: 11567–11575 (2012)

    Article  CAS  Google Scholar 

  18. Dodgson KS, Price RG. A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem. J. 84: 106–110 (1962)

    CAS  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275 (1951)

    CAS  Google Scholar 

  20. Filisetti-Cozzi TM, Carpita NC. Measurement of uronic acids without interference from neutral sugars. Anal. Biochem. 197: 157–162 (1991)

    Article  CAS  Google Scholar 

  21. Dir I, Stark AH, Chayoth R, Madar Z, Arad SM. Hypocholesterolemic Effects of nutraceuticals produced from the red Microalga Porphyridium sp in rats. Nutrients 1: 156–167 (2009)

    Article  Google Scholar 

  22. Zha XQ, Xiao JJ, Zhang HN, Wang JH, Pan LH, Yang XF, Luo JP. Polysaccharides in Laminaria japonica (LP): Extraction, physicochemical properties and their hypolipidemic activities in diet-induced mouse model of atherosclerosis. Food Chem. 134: 244–252 (2012)

    Article  CAS  Google Scholar 

  23. Matloub AA, El-Sherbini M, Borai IH, Ezz MK, Rizk MZ, Aly HF, Fouad GI. Assessment of anti-hyperlipidemic effect and physco-chemical characterization of water soluble polysaccharides from Ulva Fasciata Delile. J. Appl. Sci. Res. 9: 2983–2993 (2013)

    CAS  Google Scholar 

  24. Russell DW. Cholesterol biosynthesis and metabolism. Cardiovasc. Drugs Ther. 6: 103–110 (1992)

    Article  CAS  Google Scholar 

  25. Goldstein JL, Brown MS. Lipoprotein receptors, cholesterol metabolism, and atherosclerosis. Arch. Pathol. 99: 181–184 (1975)

    CAS  Google Scholar 

  26. Huang X, Tang J, Zhou Q, Lu H, Wu Y, Wu W. Polysaccharide from Fuzi (FPS) prevents hypercholesterolemia in rats. Lipids Health Dis. 9: 1–9 (2010)

    Article  Google Scholar 

  27. Yu CH, Dai XY, Chen Q, Zang JN, Deng LL, Liu YH, Ying HZ. Hypolipidemic and antioxidant activities of polysaccharides from Rosae Laevigatae Fructus in rats. Carbohyd. Polym. 94: 56–62 (2013)

    Article  CAS  Google Scholar 

  28. Mead JR, Irvine SA, Ramji DP. Lipoprotein lipase: Structure, function, regulation, and role in disease. J. Mol. Med. 80: 753–769 (2002)

    Article  CAS  Google Scholar 

  29. Hunt MC, Nousiainen SE, Huttunen MK, Orii KE, Svensson LT, Alexson SE. Peroxisome proliferator-induced long chain acyl-CoA thioesterases comprise a highly conserved novel multi-gene family involved in lipid metabolism. J. Biol. Chem. 274: 34317–34326 (1999)

    Article  CAS  Google Scholar 

  30. Hertz R, Bishara-Shieban J, Bar-Tana J. Mode of action of peroxisome proliferators as hypolipidemic drugs. Suppression of apolipoprotein C-III. J. Biol. Chem. 270: 13470–13475 (1995)

    Article  CAS  Google Scholar 

  31. Choi YJ, Choi SE, Ha ES, Kang Y, Han SJ, Kim DJ, Lee KW, Kim HJ. Involvement of visfatin in palmitate-induced upregulation of inflammatory cytokines in hepatocytes. Metabolism 60: 1781–1789 (2011)

    Article  CAS  Google Scholar 

  32. Arçari DP, Bartchewsky W Jr, dos Santos TW, Oliveira KA, DeOliveira CC, Gotardo ÉM, Pedrazzoli J Jr, Gambero A, Ferraz LF, Carvalho Pde O, Ribeiro ML. Anti-inflammatory effects of yerba maté extract (Ilex paraguariensis) ameliorate insulin resistance in mice with high fat diet-induced obesity. Mol. Cell. Endocrinol. 335: 110–115 (2011)

    Article  Google Scholar 

  33. Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune, and neoplastic diseases. Int. J. Biochem. Cell B. 41: 40–59 (2009)

    Article  CAS  Google Scholar 

  34. Kim SO, Yun SJ, Jung B, Lee EH, Hahm DH, Shim I, Lee HJ. Hypolipidemic effects of crude extract of adlay seed (Coix lachrymajobi var. mayuen) in obesity rat fed high fat diet: relations of TNF-alpha and leptin mRNA expressions and plasma lipid levels. Life Sci. 75: 1391–1404 (2004)

    Article  CAS  Google Scholar 

  35. Koh KK, Han SH, Quon MJ. Inflammatory markers and the metabolic syndrome: insights from therapeutic interventions. J. Am. Coll. Cardiol. 46: 1978–1985 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Joon Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, M.H., Kim, JY., Lee, J.H. et al. Antioxidative, hypolipidemic, and anti-inflammatory activities of sulfated polysaccharides from Monostroma nitidum . Food Sci Biotechnol 24, 199–205 (2015). https://doi.org/10.1007/s10068-015-0027-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0027-x

Keywords

Navigation