Skip to main content
Log in

Identification and evaluation of psychrotrophic lactic acid bacteria from imitation crab sticks to develop a microbial time temperature integrator

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Ten strains of psychrotrophic Weissella species from imitation crab sticks (ICSs) were isolated and characterized to develop a microbial-based time temperature integrator (TTI). The strains were selected according to their hemolytic activity, gram staining, and catalase reaction. All the strains grew well in modified imitation crab (MIC) broth at 5 and 15°C. Significant acid production, an associated drop in pH values, and a color change were observed in most of the strains after 7-days of incubation at both temperatures. Furthermore, the strains produced a time-temperature dependent color change due to the production of lactic acid. Phylogenetic analyses based on 16S rRNA gene sequences indicated that the ten strains belonged to the genus Weissella.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taoukis PS. Modelling the use of time-temperature indicators in distribution and stock rotation. pp. 402–432. In: Food Process Modelling. Tijkskens LMM, Hertog MLATM, Nicolaï BM (eds). CRC Press, Washington, DC, USA (2001)

    Chapter  Google Scholar 

  2. Yam KL, Takhistov PT, Miltz J. Intelligent packaging: Concepts and applications. J. Food Sci. 70: R1–R10 (2005)

    Article  CAS  Google Scholar 

  3. Mendoza TF, Welt BA, Otwell S, Teixeira AA, Kristonsson H, Balaban MO. Kinetic parameter estimation of time-temperature integrators intended for use with packaged fresh seafood. J. Food Sci. 69: FMS90–FMS96 (2004)

    CAS  Google Scholar 

  4. Giannakourou MC, Koutsoumanis K, Nychas GJE, Taoukis PS. Field evaluation of the application of time temperature integrators for monitoring fish quality in the chill chain. Int. J. Food Microbiol. 102: 323–336 (2005)

    Article  CAS  Google Scholar 

  5. Fu B, Taoukis PS, Labuza TP. Predictive microbiology for monitoring spoilage of dairy products with time-temperature integrators. J. Food Sci. 56: 1209–1215 (1991)

    Article  Google Scholar 

  6. Taoukis PS. Application of time-temperature integrators for monitoring and management of perishable product quality in the cold chain. pp. 61–74. In: Smart Packaging Technologies for Fast Moving Consumer Goods. Kerry J, Butler P (eds). John Wiley & Sons Ltd., Chichester, UK (2008)

    Chapter  Google Scholar 

  7. Vaikousi H, Biliaderis CG, Koutsoumanis KP. Development of a microbial time/temperature indicator prototype for monitoring the microbiological quality of chilled foods. Appl. Environ. Microb. 74: 3242–3250 (2008)

    Article  CAS  Google Scholar 

  8. Hogan SA, Kerry JP. Smart packaging of meat and poultry products. pp. 33–59. In: Smart Packaging Technologies for Fast Moving Consumer Goods. Kerry J, Butler P (eds). John Wiley & Sons Ltd., Chichester, UK (2008)

    Chapter  Google Scholar 

  9. Su YC, Daeschel MA, Frazier J, Jaczynski J. Microbiology and pasteurization of surimi seafood. pp 583–648. In: Surimi and Surimi Seafood. Park JW (eds). CRC Press, Boca Raton, FL, USA (2005)

    Chapter  Google Scholar 

  10. Coton M, Denis C, Cadot P, Coton E. Biodiversity and characterization of aerobic spore-forming bacteria in surimi seafood products. Food Microbiol. 28: 252–260 (2011)

    Article  CAS  Google Scholar 

  11. KFDA. Korean Food Standards Codex. Korea Food and Drug Administration. Seoul, Korea. pp. 5.12.1-5.12.2 (2011)

    Google Scholar 

  12. Lee YS, Ha JH, Park KH, Lee SY, Choi YJ, Lee DH, Park SH, Moon ES, Ryu K, Shin HS, Ha SD. Survey on storage temperature of domestic major chilled foods in refrigerator. J. Fd. Hyg. Safety 23: 304–308 (2008)

    Google Scholar 

  13. Gregersen T. Rapid method for distinction of Gram-negative from Gram-positive bacteria. Appl. Microbiol. Biot. 5: 123–127 (1978)

    Article  Google Scholar 

  14. Moon SY, Chang TE, Woo GJ, Shin IS. Development of predictive growth model of Vibrio parahaemolyticus using mathematical quantitative model. Korean J. Food Sci. Technol. 36: 349–354 (2004)

    Google Scholar 

  15. AOAC. Official Methods of Analysis of AOAC Intl. 15th ed. Method 920.124. Association of Official Analytical Chemists, Washington, DC, USA (1995)

    Google Scholar 

  16. Downs GM, Barnard JM. Clustering methods and their uses in computational chemistry. pp. 1–40. In: Reviews in Computational Chemistry. Lipkowitz KB, Boyd DB (eds). Wiley, London, UK (2002)

    Google Scholar 

  17. Sultana GNN, Khan AH. Optimization of the sample preparation method for DNA sequencing. J. Biological Sci. 7: 194–199 (2007)

    Article  CAS  Google Scholar 

  18. Rodríguez del Águila MM, Benítez-Parejo N. Simple linear and multivariate regression models. Allergol. Immunopathol. 39: 159–173 (2011)

    Article  Google Scholar 

  19. Kim HY, Song SM. Changes in the microbial qualities and sensory characteristics of boiled potatoes and imitation crab sticks in soy sauce as prepared by the cook-chill system and sous vide cook-chill system. Korean J. Food Cookery Sci. 23: 252–260 (2007)

    Google Scholar 

  20. Park SY, Choi JW, Yeon JH, Lee MJ, Oh DH, Hong CH, Bahk GJ, Woo GJ, Park JS, Ha SD. Assessment of contamination level of foodborne pathogens in the main ingredients of Kimbab during the preparing process. Korean J. Food Sci. Technol. 37: 122–128 (2005)

    Google Scholar 

  21. Kim DP, Chang DS, Kim SJ. Bacterial quality of fish meat paste products and isolation of thermoduric bacteria. Korean J. Appl. Microbiol. Biotechnol. 13: 409–415 (1985)

    Google Scholar 

  22. Morita RY. Psychrophilic bacteria. Bacteriol. Rev. 39: 144–167 (1975)

    CAS  Google Scholar 

  23. Lyhs U, Lahtinen J, Fredriksson-Ahomaa M, Hyytiä-Trees E, Elfing K, Korkeala H. Microbiological quality and shelf-life of vacuumpackaged ‘gravid’ rainbow trout stored at 3 and 8°C. Int. J. Food Microbiol. 70: 221–230 (2001)

    Article  CAS  Google Scholar 

  24. Ellouze M, Gauchi JP, Augustin JC. Use of global sensitiveity analysis in quantitative microbial risk assessment: Application to the evaluation of a biological time temperature integrator as a quality and safety indicator for cold smoked salmon. Food Microbiol. 28: 755–769 (2011)

    Article  CAS  Google Scholar 

  25. Tsironi T, Gogou E, Velliou E, Taoukis PS. Application and validation of the TTI based chill chain management system SMAS (Safety Monitoring and Assurance System) on shelf life optimization of vacuum packed chilled tuna. Int. J. Food Microbiol. 128: 108–115 (2008)

    Article  Google Scholar 

  26. Tomé E, Gibbs PA, Teixeira PC. Could modifications of processing parameters enhance the growth and selection of lactic acid bacteria in cold-smoked salmon to improve preservation by natural means. J. Food Protect. 8: 1607–1614 (2007)

    Google Scholar 

  27. Paludan-Müller C, Dalgaard P, Huss HH, Gram L. Evaluation of the role of Carnobacterium piscicola in spoilage of vacuum and modified atmosphere-packed-smoked salmon stored at 5°C. Int. J. Food Microbiol. 39: 155–166 (1998)

    Article  Google Scholar 

  28. Huss HH, Jeppesen VF, Johansen C, Gram L. Biopreservation of fish products — A review of recent approaches and results. J. Aquat. Food Prod. T. 4: 5–26 (1995)

    Article  CAS  Google Scholar 

  29. Liu JY, Li AH, Ji C, Yang WM. First description of a novel Weissella species as a opportunistic pathogen for rainbow trout Oncorhynchus mykiss (Walbaum) in China. Vet. Microbiol. 136: 314–320 (2009)

    Article  Google Scholar 

  30. Françoise L. Occurrence and role of lactic acid bacteria in seafood products. Food Microbiol. 27: 698–709 (2010)

    Article  Google Scholar 

  31. Palys T, Nakamura LK, Cohan FM. Discovery and classification of ecological diversity in the bacterial world: The role of DNA sequence data. Int. J. Syst. Bacteriol. 47: 1145–1156 (1997)

    Article  CAS  Google Scholar 

  32. Collins MD, Samelis J, Metaxopolous J, Wallbanks S. Taxonomic studies on some leuconostoc-like organisms from fermented sausages: Description of a new genus Weissella from the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 49: 405–413 (1993)

    Google Scholar 

  33. Ringø E. Lactic acid bacteria in fish and fish farming. pp. 581–610. In: Lactic Acid Bacteria — Microbiological and Functional Aspects. Salminen S, Von Wright A, Ouwehand A (eds). Marcel Dekker, Basel, Switzerland (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Ju Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, S.W., Mijanur Rahman, A.T.M. & Lee, S.J. Identification and evaluation of psychrotrophic lactic acid bacteria from imitation crab sticks to develop a microbial time temperature integrator. Food Sci Biotechnol 24, 141–153 (2015). https://doi.org/10.1007/s10068-015-0020-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0020-4

Keywords

Navigation