Skip to main content
Log in

Enhancement of microbial oil production by alpha-linolenic acid producing Yarrowia lipolytica strains QU22 and QU137

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial oils enriched in essential polyunsaturated fatty acids can be used as nutritional complements. In order to improve the lipid yields and lipid profiles of 2 Yarrowia lipolytica strains, the effects of medium components and culture conditions were investigated using shake flasks. Under optimized conditions (cultivation for 3 days at 25oC and 150 rpm, using peptone as a nitrogen source and glucose as a carbon source), the biomass, lipid yield, and lipid content reached 6.75 g/L, 3.48 g/L, and 51.55% for Y. lipolytica QU22, and 6.85 g/L, 3.52 g/L, and 51.38% for Y. lipolytica QU137, respectively. Using a shaking speed of 150 rpm, unsaturated fatty acids constituted 87.96% (QU22) and 87.08% (QU137) of the total lipids produced by these strains, with 9.52 and 7.86% of alpha-linolenic acid, respectively. The strains are suitable candidates for fermentation processes involving essential polyunsaturated fatty acid (PUFA) production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karatay SE, Dönmez G. Improving the lipid accumulation properties of the yeast cells for biodiesel production using molasses. Bioresource Technol. 101: 7988–7990 (2010)

    Article  CAS  Google Scholar 

  2. Christophe G, Kumari V, Nouaillei R, Gaudeti G, Fontanillei P, Pandeyii H, Soccoli CR, Larrochei C. Recent developments in microbial oils production: A possible alternative to vegetable oils for biodiesel without competition with human food? Braz. Arch. Biol. Technol. 55: 29–46 (2012)

    Article  CAS  Google Scholar 

  3. Beopoulos A, Nicaud JM, Gaillardin C. An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl. Microbiol. Biotechnol. 90: 1–14 (2011)

    Article  Google Scholar 

  4. Èertík M, Adamechová Z, Laoteng K. Microbial production of γ-linolenic acid: Submerged versus solid-state fermentations. Food Sci. Biotechnol. 21: 921–926 (2012)

    Article  Google Scholar 

  5. Barceló-Coblijn AG, Murphy EJ. Alpha-linolenic acid and its conversion to longer chain n3 fatty acids: Benefits for human health and a role in maintaining tissue n3 fatty acid levels. Prog. Lipid. Res. 48: 355–374 (2009)

    Article  Google Scholar 

  6. Landell MF, Hartfelder C, Valente P. Identification and enzymatic profile of yeasts isolated from artisanal cheese in Southern Brazil. Acta Sci. Vet. 34: 49–55 (2006)

    Google Scholar 

  7. Poli JS, Dallé P, Senter L, Mendes S, Ramirez M, Vainstein MH, Valente P. Fatty acid methyl esters produced by oleaginous yeast Yarrowia lipolytica QU21: An alternative for vegetable oils R. Bras. Bioci. 11: 203–208 (2013)

    Google Scholar 

  8. Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud J M. Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 74: 7779–7789 (2008)

    Article  CAS  Google Scholar 

  9. Coelho MAZ, Amaral PFF, Belo I. Yarrowia lipolytica: An industrial workhorse. Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. 2: 930–940 (2010)

    Google Scholar 

  10. Groenewald M, Boekhout T, Neuveglise C, Gaillardin C, Van Dijck P, Wyss M. Yarrowia lipolytica: Safety assessment of an oleaginous yeast with a great industrial potential. Crit. Rev. Microbiol. 40: 187–206 (2014)

    Article  CAS  Google Scholar 

  11. Liang XA, Dong WB, Miao XJ, Dai CJ. Production technology and influencing factors of microorganism grease. Food Res. Develop. 27: 46–47 (2006)

    CAS  Google Scholar 

  12. Lin J, Shen H, Tan H, Zhao X, Wu S, Hu C, Zhao ZK. Lipid production by Lipomyces starkeyi cells in glucose solution without auxiliary nutrients. J. Biotechnol. 152: 184–188 (2011)

    Article  CAS  Google Scholar 

  13. Wu S, Zhao X, Shen H, Wang Q, Zhao ZK. Microbial lipid production by Rhodosporidium toruloides under sulphate-limited conditions. Bioresource Technol. 102: 1803–1807 (2011)

    Article  CAS  Google Scholar 

  14. Yang Z, Chen J. Research advance on microbial oils and their exploitation and utilization. J. Cereals Oil. 7: 13–15 (2003)

    Google Scholar 

  15. Yi SJ, Zheng YP. Research and application of oleaginous microorganism. China Foreign Energ. 11: 90–94 (2006)

    CAS  Google Scholar 

  16. Liu SJ, Yang WB, Shi AH. Screening of the high lipid production strains and studies on its flask culture conditions. Microbiology 27: 93–97 (2000)

    CAS  Google Scholar 

  17. Shi AH, Gu JS, Liu SJ, Ma YJ. Screening high oil yield yeast strains, fermentation conditions optimization and fat composition analysis. China Brewing. 4: 10–13 (1997)

    Google Scholar 

  18. Bligh EC, Dyer WJ. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917 (1959)

    Article  CAS  Google Scholar 

  19. Hartman L, Lago RCA. Rapid preparation of fatty acids methyl esters. Laborat. Prat. London 22: 475–476 (1973)

    CAS  Google Scholar 

  20. Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM. Yarrowia lipolytica as a model for bio-oil production. Prog. Lipid. Res. 48: 375–387 (2009)

    Article  CAS  Google Scholar 

  21. Papanikolaou S, Chatzifragkou A, Fakas S, Galiotou-Panayotou M, Komaitis M, Nicaud JM, Aggelis G. Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose. Eur. J. Lipid. Sci. 111: 1221–1232 (2009)

    Article  CAS  Google Scholar 

  22. Sarris D, Galiotou-Panayotou M, Koutinas A, Komaitis M, Papanikolaou S. Citric acid, biomass, and cellular lipid production by Y. lipolytica strains cultivated on olive mill wastewater-based media. J. Chem. Technol. Biotechnol. 86: 1439–1448 (2011)

    Article  CAS  Google Scholar 

  23. Katre G, Joshi C, Khot M, Zinjarde S, Ravikumar M. Evaluation of single cell oil (SCO) from a tropical marine yeast Yarrowia lipolytica NCIM 3589 as a potential feedstock for biodiesel. AMB Express. 2: 36 (2012)

    Article  Google Scholar 

  24. Tai M, Stephanopoulos G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab. Eng. 15: 1–9 (2013)

    Article  CAS  Google Scholar 

  25. Tsigie YAA, Wanga CH, Truong CTB, Ju YH. Lipid production from Yarrowia lipolytica Po1g grown in sugarcane. Bioresource Technol. 102: 9216–9222 (2011)

    Article  CAS  Google Scholar 

  26. Papanikolaou S, Aggelis G. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresource Technol. 82: 43–49 (2002)

    Article  CAS  Google Scholar 

  27. Kitchaa S, Cheirsilpb B. Sreening of oleaginous yeasts and optimization for lipid production using crude glycerol as a carbon source. Energy Procedia. 9: 274–282 (2011)

    Article  CAS  Google Scholar 

  28. Zhu LY, Zong MH, Wu H. Efficient lipid production with Trichosporon capitatum and its use for biodiesel preparation. Bioresource Technol. 99: 7881–5 (2008)

    Article  CAS  Google Scholar 

  29. Li Y, Zhao ZK, Bai F. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microbiol. Technol. 41: 312–317 (2007)

    Article  Google Scholar 

  30. Yong-Hong L, Bo L, Zong-Bao Z, Feng-Wu B. Optimization of culture conditions for lipid production by Rhodosporidium toruloides. Chinese J. Biotechnol. 22: 650–656 (2006)

    Article  Google Scholar 

  31. Galafassi S, Cucchetti D, Pizza F, Franzosi G, Bianchi D, Compagno C. Lipid production for second generation biodiesel by the oleaginous yeast Rhodotorula graminis. Bioresource Technol. 111: 398–403 (2012)

    Article  CAS  Google Scholar 

  32. Čertík M, Breierová E, Oláhová M, Šajbidor J, Márová I. Effect of selenium on lipid alternations in pigment-forming yeasts. Food Sci. Biotechnol. 22(Suppl.): 45–51 (2013)

    Google Scholar 

  33. Damude HG, Zhang H, Farrall L, Ripp KG, Tomb JF, Hollerbach D, Yadav N. Identification of bifunctional 1–2–3 fatty acid desaturases for improving the ratio of 3 to 6 fatty acids in microbes and plants. P. Natl. Acad. Sci. USA 3: 9446–9451 (2006)

    Article  Google Scholar 

  34. Huang C, Chen XF, Xiong L, Yang XY, Chen XD, Maa LL, Chen Y. Microbial oil production from corncob acid hydrolysate by oleaginous yeast Trichosporon coremiiforme. Biomass Bioenerg. 49: 273–278 (2013)

    Article  CAS  Google Scholar 

  35. Ahmed SU, Singh SK, Pandey A, Kanjilal S, Prasad RBN. Fatty acid profiling during microbial lipid production under varying pO2 and impeller tip speeds. Appl. Biochem. Biotechnol. 151: 599–609 (2008)

    Article  CAS  Google Scholar 

  36. Yen HW, Zhang Z. Effects of dissolved oxygen level on cell growth and total lipid accumulation in the cultivation of Rhodotorula glutinis. J. Biosci. Bioeng. 112: 71–74 (2011)

    Article  CAS  Google Scholar 

  37. Fontanille P, Kumar V, Christophe G, Nouaille R, Larroche C. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresource Technol. 114: 443–449 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Mattanna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattanna, P., Dallé da Rosa, P., Gusso, A.P. et al. Enhancement of microbial oil production by alpha-linolenic acid producing Yarrowia lipolytica strains QU22 and QU137. Food Sci Biotechnol 23, 1929–1934 (2014). https://doi.org/10.1007/s10068-014-0263-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0263-5

Keywords

Navigation