Changes in physicochemical characteristics and antioxidant activities of Jerusalem artichoke tea infusions resulting from different production processes

Abstract

The physicochemical properties of Jerusalem artichoke (Helianthus tuberosus L.) tea infusions produced using drying, roasting, puffing, and extrusion methods were investigated. The surfaces of puffed and extruded artichokes were more porous than the surfaces of dried and roasted artichokes. The water solubility index was highest for tea infusions of extruded and puffed artichokes. The total phenolic contents and antioxidant activities of artichoke tea infusions were in the order of puffed>extruded> roasted>hot air dried. Moderate and fine particle sizes used for tea infusions had the highest browning degrees and antioxidant activities, similar to total phenolic contents. Basic data are provided with implications for further development of processed food products, including tea bags using Jerusalem artichoke.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Weisburger JH. Tea and health: A historical perspective. Cancer Lett. 114: 315–317 (1997)

    CAS  Article  Google Scholar 

  2. 2.

    Astill C, Birch MR, Dacombe C, Humphrey PG, Martin PT. Factors affecting the caffeine and polyphenol contents of black and green tea infusions. J. Agr. Food Chem. 49: 5340–5347 (2001)

    CAS  Article  Google Scholar 

  3. 3.

    Renard, CMGC, Voragen AGJ, Thibault, JF, Pilnik W. Comparison between enzymatically and chemically extracted pectins from apple cell walls. Anim. Feed Sci. Tech. 32: 69–75 (1991)

    CAS  Article  Google Scholar 

  4. 4.

    Saklara S, Unganb S, Katnasc S. Microstructural changes in hazelnuts during roasting. Food Res. Int. 36: 19–23 (2003)

    Article  Google Scholar 

  5. 5.

    Redgwell RJ, Trovato V, Curti D. Cocoa bean carbohydrates: Roasting induced changes and polymer interactions. Food Chem. 80: 511–516 (2003)

    CAS  Article  Google Scholar 

  6. 6.

    Wada T, Sugatani J, Terada E, Ohguchi M, Miwa M. Physicochemical characterization and biological effects of inulin enzymatically synthesized from sucrose. J. Agr. Food Chem. 53: 1246–1253 (2005)

    CAS  Article  Google Scholar 

  7. 7.

    Guggisberg D, Cuthbert-Steven J, Piccinali P, Bütikofer U, Eberhard P. Rheological microstructural and sensory characterization of lowfat and whole milk set yoghurt as influenced by inulin addition. Int. Dairy J. 19: 107–115 (2009)

    CAS  Article  Google Scholar 

  8. 8.

    Kelly G. Inulin-type prebiotics: A review. (Part 2). Altern. Med. Rev. 14: 36–55 (2009)

    Google Scholar 

  9. 9.

    Park SJ, Kim AY, Lee HS, Kim BY, Baik MY. Effects of puffing process on the saponin components in Platycodon grandiflorus (jacqin) A. De Candle. Food Eng. Prog. 16: 164–171 (2012)

    Google Scholar 

  10. 10.

    AACC International. Approved Methods of Analysis. 11th ed. Method 56–120. American Association of Cereal Chemists, St. Paul, MN, USA (1999)

    Google Scholar 

  11. 11.

    Gutfinger T. Polyphenols in olive oils. J. Am. Oil Chem. Soc. 58: 966–968 (1981)

    CAS  Article  Google Scholar 

  12. 12.

    Chu YH, Chang CL, Hsu HF. Flavonoid content of several vegetables and their antioxidant activity. J. Sci. Food Agr. 80: 561–566 (2000)

    CAS  Article  Google Scholar 

  13. 13.

    Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 239: 70–76 (1996)

    CAS  Article  Google Scholar 

  14. 14.

    Matz SA. The Chemistry and Technology of Cereals as Food and Feed. AVI Publishing Company, Inc., Westport, CT, USA (1959)

    Google Scholar 

  15. 15.

    Kim SB, Do JR, Lee YW, Gu YS. Nitritescavenging effects of roasted-barley extracts according to processing conditions. Korean J. Food Sci. Technol. 22: 748–752 (1990)

    Google Scholar 

  16. 16.

    Payne FA, Taraba JL, Saputra DA. Review of puffing processes for expansion of biological products. J. Food Eng. 10: 183–197 (1989)

    Article  Google Scholar 

  17. 17.

    Lee WJ, Schwarz PB. Effect of twin-screw extrusion on physical properties and dietary fiber content of extrudates from barley/corn blends. Food Sci. Biotechnol. 3: 169–174 (1994)

    Google Scholar 

  18. 18.

    Siljestrom M, Westerlund E, Bjorck I, Holm J, Asp NG, Theander O. The different thermal processes on dietary fiber and starch content of whole grain wheat and white flour. J. Cereal Sci. 4: 315–319 (1986)

    Article  Google Scholar 

  19. 19.

    Ryu GH, Remon JP. Extraction yield of extruded ginseng and granulation of its extracts by cold extrusion-spheronization. J. Korean Soc. Food Sci. Nutr. 33: 899–904 (2004)

    Article  Google Scholar 

  20. 20.

    Tie J, Park HY, Ryu GH. Characteristics of cereals prepared by extrusion-cooking and freeze-drying. Korean Soc. Food Sci. Technol. 37: 757–762 (2005)

    Google Scholar 

  21. 21.

    Ning L, Villota R, Artz WE. Modification of corn fiber through chemical treatments in combination with twin-screw extrusion. Cereal Chem. 68: 632–636 (1991)

    Google Scholar 

  22. 22.

    Yoon SR, Lee MH, Park JH. Changes in physicochemical compounds with heating treatment of ginseng. J. Korean Soc. Food Sci. Nutr. 34: 1572–1578 (2005)

    CAS  Article  Google Scholar 

  23. 23.

    Shin DB, Lee DW, Yang R, Kim JA. Antioxidative properties and flavonoids contents of matured citrus peel extracts. Food Sci. Biotechnol. 15: 357–362 (2006)

    CAS  Google Scholar 

  24. 24.

    Cho YJ, Ju IS, Lee BC, An BJ, Kim JH, Kwon OJ. Biological activity of Omija (Schizandra chinensis Baillon) extracts. J. Korean Soc. Appl. Biol. Chem. 50: 198–203 (2007)

    Google Scholar 

  25. 25.

    Heijnen CG, Haenen GR, van Acker FA, van der Vijgh WJ, Bast A. Flavonoids as peroxynitrite scavengers: The role of the hydroxyl groups. Toxicol. In Vitro 15: 3–6 (2001)

    CAS  Article  Google Scholar 

  26. 26.

    Lee JW, Do JH. Current studies on browning reaction products and acidic polysaccharide in Korean red ginseng. J. Ginseng Res. 30: 41–48 (2006)

    CAS  Article  Google Scholar 

  27. 27.

    Zhu Y, Dong Y, Qian X, Cui F, Guo Q, Zhou X, Wang Y, Zhang Y, Xiong Z. Effect of superfine grinding on antidiabetic activity of bitter melon powder. Int. J. Mol. Sci. 13: 14203–14218 (2011)

    Article  Google Scholar 

  28. 28.

    Kim YH, Seo HI, Ko JY, Kim JI, Lee JS, Song SB, Jung TW, Kim KY, Kwak DY, Oh IS, Jeong HS, Woo KS. Physicochemical characteristics of the Sorghum (Sorghum bicolor L. Moench) powder following low temperature-microparticulation. J. Korean Soc. Food Sci. Nutr. 2: 656–663 (2012)

    Article  Google Scholar 

  29. 29.

    Lee YT, Kim YU. Physicochemical properties of brown rice flours differing in amylose content prepared by different milling methods. J. Korean Soc. Food Sci. Nutr. 40: 1797–1801 (2011)

    CAS  Article  Google Scholar 

  30. 30.

    Brewer LR, Kubola J, Siriamornpun S, Herald TJ, Shi YC. Wheat bran particle size influence on phytochemical extractability and antioxidant properties. Food Chem. 152: 483–490 (2014)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ok-Hwan Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, YJ., Lee, Mg., Yu, SY. et al. Changes in physicochemical characteristics and antioxidant activities of Jerusalem artichoke tea infusions resulting from different production processes. Food Sci Biotechnol 23, 1885–1892 (2014). https://doi.org/10.1007/s10068-014-0257-3

Download citation

Keywords

  • Jerusalem artichoke (Helianthus tuberosus L.)
  • physicochemical property
  • different production process
  • tea infusion
  • antioxidant activity