Skip to main content

Advertisement

Log in

Inhibitory efficacy of Ligularia fischeri against aldose reductase and advanced glycation end products formation

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The efficacy of Ligularia fischeri (LF) for managing diabetic complications was evaluated by assessing inhibitory effects against advanced glycation end product (AGE) formation, rat lens aldose reductase (RLAR), and 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging. The ethyl acetate fraction from 70% ethanol extracts of LF showed the highest DPPH radical scavenging activity of 53.90% at a concentration of 3.3 μg/mL. The ethyl acetate fraction exhibited the most potent AGE formation inhibition of 73.57% at a concentration of 55 μg/mL and showed the most potent RLAR inhibition of 88.97% at a concentration of 11.11 μg/mL. The ethyl acetate fraction exhibited the most potent antioxidant and anti-diabetic effects. Nuclear magnetic resonance via bioactivity-guided fractionation of the LF ethyl acetate fraction revealed that 3,4-dicaffeoylquinic acid was the bioactive compound. This compound from LF can be effective for prevention or treatment of diabetic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 15: 539–553 (1998)

    Article  CAS  Google Scholar 

  2. Williamson JR, Chang K, Frangos M, Hasan KS, Ido Y, Kawamura T, Nyengaard JR, van den Enden M, Kilo C, Tilton RG. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 42: 801–813 (1993)

    Article  CAS  Google Scholar 

  3. de Groot M, Anderson R, Freedland KE, Clouse RE, Lustman PJ. Association of depression and diabetes complications: A metaanalysis. Psychosom. Med. 63: 619–630 (2001)

    Article  Google Scholar 

  4. Chung SS, Ho EC, Lam KS, Chung SK. Contribution of polyol pathway to diabetes-induced oxidative stress. J. Am. Soc. Nephrol. 14: S233–S236 (2003)

    Article  CAS  Google Scholar 

  5. Reddy VP, Beyaz A. Inhibitors of the Maillard reaction and AGE breakers as therapeutics for multiple diseases. Drug Discov. Today 11: 646–654 (2006)

    Article  CAS  Google Scholar 

  6. Park JY, Ha SW, King GL. The role of protein kinase C activation in the pathogenesis of diabetic vascular complications. Perit. Dial. Int. 19: S222–S227 (1999)

    Google Scholar 

  7. Buse MG. Hexosamines, insulin resistance, and the complications of diabetes: Current status. Am. J. Physiol. Endocrinol. Metab. 290: E1–E8 (2006)

    Article  CAS  Google Scholar 

  8. Yabe-Nishimura C. Aldose reductase in glucose toxicity: A potential target for the prevention of diabetic complications. Pharmacol. Rev. 50: 21–33 (1998)

    CAS  Google Scholar 

  9. Dunlop M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int. Suppl. 58: S3–S12 (2000)

    Article  Google Scholar 

  10. Brownlee M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 54: 1615–1625 (2005)

    Article  CAS  Google Scholar 

  11. Costantino L, Rastelli G, Gamberini MC, Vinson JA, Bose P, Iannone A, Staffieri M, Antolini L, Del Corso A, Mura U, Albasini A. 1-Benzopyran-4-one antioxidants as aldose reductase inhibitors. J. Med. Chem. 42: 1881–1893 (1999)

    Article  CAS  Google Scholar 

  12. Ahmed N. Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res. Clin. Pract. 67: 3–21 (2005)

    Article  CAS  Google Scholar 

  13. Brownlee M. Glycation products and the pathogenesis of diabetic complications. Diabetes Care 15: 1835–1843 (1992)

    Article  CAS  Google Scholar 

  14. Wirasathien L, Pengsuparp T, Suttisri R, Ueda H, Moriyasu M, Kawanishi K. Inhibitors of aldose reductase and advanced glycation end products formation from the leaves of Stelechocarpus cauliflorus R.E. Fr. Phytomedicine 14: 546–550 (2007)

    Article  CAS  Google Scholar 

  15. Maritim AC, Sanders RA, Watkins JB 3rd. Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol. 17: 24–38 (2003)

    Article  CAS  Google Scholar 

  16. Choi J, Park JK, Lee KT, Park KK, Kim WB, Lee JH, Jung HJ, Park HJ. In vivo antihepatotoxic effects of Ligularia fischeri var. spiciformis and the identification of the active component, 3,4-dicaffeoylquinic acid. J. Med. Food 8: 348–352 (2005)

    Article  CAS  Google Scholar 

  17. Lee KT, Koo SJ, Jung SH, Choi J, Jung HJ, Park HJ. Structure of three new terpenoids, spiciformisins a and b, and monocyclosqualene, isolated from the herbs of Ligularia fischeri var. spiciformis and cytotoxicity. Arch. Pharm. Res. 25: 820–823 (2002)

    Article  CAS  Google Scholar 

  18. Zhang WJ, Li XH, Shi YP. A pair of epimeric spirosesquiterpenes from the roots of Ligularia fischeri. J. Nat. Prod. 73: 143–146 (2010)

    Article  CAS  Google Scholar 

  19. Piao XL, Mi XY, Tian YZ, Wu Q, Piao HS, Zeng Z, Wang D, Piao X. Rapid identification and characterization of antioxidants from Ligularia fischeri. Arch. Pharm. Res. 32: 1689–1694 (2009)

    Article  CAS  Google Scholar 

  20. Choi EM, Kim YH. A preliminary study of the effects of an extract of Ligularia fischeri leaves on type II collagen-induced arthritis in DBA/1J mice. Food Chem. Toxicol. 46: 375–379 (2008)

    Article  CAS  Google Scholar 

  21. Lee BI, Nugroho A, Bachri MS, Choi J, Lee KR, Choi JS, Kim WB, Lee KT, Lee JD, Park HJ. Anti-ulcerogenic effect and HPLC analysis of the caffeoylquinic acid-rich extract from Ligularia stenocephala. Biol. Pharm. Bull. 33: 493–497 (2010)

    Article  CAS  Google Scholar 

  22. Chon SU, Kim YM, Kim DK, Heo BG, Cho JY. Phytotoxic effect, DPPH radical scavenging activity and chlorogenic acid level of methanol extracts from aerial parts of several Korean salad plants. Koren J. Plant Res. 19: 405–410 (2006)

    Google Scholar 

  23. Jung HA, Jung YJ, Yoon NY, Jeong DM, Bae HJ, Kim DW, Na DH, Choi JS. Inhibitory effects of Nelumbo nucifera leaves on rat lens aldose reductase, advanced glycation endproducts formation, and oxidative stress. Food Chem. Toxicol. 46: 3818–3826 (2008)

    Article  CAS  Google Scholar 

  24. Kim HS, Park UY, Seong YH. Inhibitory effects of ginseng components on rat lens aldose reductase activities. Korean J. Ginseng Sci. 20: 106–110 (1996)

    CAS  Google Scholar 

  25. Hayman S, Kinoshita JH. Isolation and properties of lens aldose reductase. J. Biol. Chem. 240: 877–882 (1965)

    CAS  Google Scholar 

  26. Choi EM, Ding Y, Nguyen HT, Park SH, Kim YH. Antioxidant activity of Gomchi (Ligularia fischeri) Leaves. Food Sci. Biotechnol. 16: 710–714 (2007)

    Google Scholar 

  27. Shang YF, Kim SM, Song DG, Pan CH, Lee WJ, Um BH. Isolation and identification of antioxidant compounds from Ligularia fischeri. J. Food Sci. 75: C530–C535 (2010)

    Article  CAS  Google Scholar 

  28. Peyroux J, Sternberg M. Advanced glycation endproducts (AGEs): Pharmacological inhibition in diabetes. Pathol. Biol. (Paris) 54: 405–419 (2006)

    Article  CAS  Google Scholar 

  29. Singh R, Barden A, Mori T, Beilin L. Advanced glycation end products: A review. Diabetologia 44: 129–146 (2001)

    Article  CAS  Google Scholar 

  30. Lee HS, Hong CO, Lee KW. Advanced glycation endproduct-induced diabetic complications. Food Sci. Biotechnol. 17: 1131–1138 (2008)

    CAS  Google Scholar 

  31. Logendra S, Ribnicky DM, Yang H, Poulev A, Ma J, Kennelly EJ, Raskin I. Bioassay-guided isolation of aldose reductase inhibitors from Artemisia dracunculus. Phytochemistry 67: 1539–1546 (2006)

    Article  CAS  Google Scholar 

  32. Arbiser JL, Li XC, Hossain CF, Nagle DG, Smith DM, Miller P, Govindarajan B, DiCarlo J, Landis-Piwowar KR, Dou QP. Naturally occurring proteasome inhibitors from mate tea (Ilex paraguayensis) serve as models for topical proteasome inhibitors. J. Invest. Dermatol. 125: 207–212 (2005)

    CAS  Google Scholar 

  33. Wu C, Chen F, Wang X, Wu Y, Dong M, He G, Galyean RD, He L, Huang G. Identification of antioxidant phenolic compounds in feverfew (Tanacetum parthenium) by HPLC-ESI-MS/MS and NMR. Phytochem. Anal. 18: 401–410 (2007)

    Article  CAS  Google Scholar 

  34. Wan C, Yu Y, Zhou S, Tian S, Cao S. Isolation and identification of phenolic compounds from Gynura divaricata leaves. Pharmacogn. Mag. 7: 101–108 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Jun Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X.F., Jeon, Y.E., Shim, JH. et al. Inhibitory efficacy of Ligularia fischeri against aldose reductase and advanced glycation end products formation. Food Sci Biotechnol 23, 1747–1752 (2014). https://doi.org/10.1007/s10068-014-0239-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0239-5

Keywords

Navigation