Skip to main content
Log in

Characteristics and growth inhibition of isolated bacteriophages for Enterococcus faecalis

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Enterococcus faecalis has been used as a starter for fermented food and probiotics, but it can produce biogenic amine in foods and also cause infectious diseases in humans. The antibiotic resistance acquired by E. faecalis restricts antibiotic prescriptions in clinical settings. Bacteriophages EFP4 and EFP7 for E. faecalis, isolated from soil samples, impeded E. faecalis growth. Morphological analysis showed that bacteriophages EFP4 and EFP7 belonged to the Siphoviridae. Bacteriophages EFP4 and EFP7 were susceptible to temperatures above 70°C; however, stability was slightly reduced to 2–3 log PFU/mL after 30 min in 70% ethanol. Two bacteriophages did not suffer phage resistant in E. faecalis for 24 h. Therefore, bacteriophages EFP4 and EFP7, after more study, are candidates for use in biocontrol and controlled fermentation of E. faecalis through food applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giraffa G. Functionality of enterococci in dairy products. Int. J. Food Microbiol. 88: 215–222 (2003)

    Article  CAS  Google Scholar 

  2. Franz CM, van Belkum MJ, Holzapfel WH, Abriouel H, Gálvez A. Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol. Rev. 31: 293–310 (2007)

    Article  CAS  Google Scholar 

  3. Tendolkar PM, Baghdayan AS, Shankar N. Pathogenic enterococci new developments in the 21st century. Cell. Mol. Life Sci. 60: 2622–2636 (2003)

    Article  CAS  Google Scholar 

  4. Jett BD, Huycke MM, Gilnore MS. Virulence of enterococci. Clin. Microbiol. Rev. 7: 462–478 (1994)

    CAS  Google Scholar 

  5. Franz CM, Stiles ME, Schleifer KH, Holzapfel WH. Enterococci in foods-a conundrum for food safety. Int. J. Food Microbiol. 88: 105–122 (2003)

    Article  CAS  Google Scholar 

  6. Kawalec M, Gniadkowski M, Zaleska M, Ozorowski T, Konopka L, Hryniewicz W. Outbreak of vancomycin-resistant Enterococcus faecium of the phenotype VanB in a hospital in Warsaw, Poland: Probable transmission of the resistance determinants into an endemic vancomycinsusceptible strain. J. Clin. Microbiol. 39: 1781–1787 (2001)

    Article  CAS  Google Scholar 

  7. Fisher K, Phillips C. The ecology, epidemiology, and virulence of Enterococcus. Microbiology+ 155: 1749–1757 (2009)

    CAS  Google Scholar 

  8. Gordts B, van Landuyt H, Ieven M, Vandamme P, Goossens H. Vancomycin-resistant enterococci colonizing the intestinal tracts of hospitalized patients. J. Clin. Microbiol. 33: 2842–2846 (1995)

    CAS  Google Scholar 

  9. Linden PK, Miller CB. Vancomycin-resistant enterococci: The clinical effect of a common nosocomical pathogen. Diagn. Micr. Infec. Dis. 33: 113–120 (1999)

    Article  CAS  Google Scholar 

  10. Gin AS, Zhanel GG. Vancomycin-resistant enterococci. Ann. Pharmacother. 30: 615–624 (1996)

    CAS  Google Scholar 

  11. Dukta-Malen S, Evers S, Courvalin P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J. Clin. Micribiol. 33: 24–27 (1995)

    Google Scholar 

  12. Sternm CS, Carvalho Mda G, Teixeira LM. Chracterization of enterococci isolated from human and nonhuman sources in Brazil. Diagn. Micr. Infec. Dis. 20: 61–67 (1994)

    Article  Google Scholar 

  13. Iwen PC, Kelly DM, Linder J, Hinrichs SH, Dominguez EA, Rupp ME, Patil KD. Change in prevalence and antibiotic resistance of Enterococcus species isolated from blood cultures over an 8-year period. Antimicrob. Agents Ch. 41: 494–495 (1997)

    CAS  Google Scholar 

  14. Giraffa G. Enterococci from foods. FEMS Microbiol. Rev. 26: 163–171 (2002)

    Article  CAS  Google Scholar 

  15. Campbell A. The future of bacteriophage biology. Nat. Rev. Genet. 4: 471–477 (2003)

    Article  CAS  Google Scholar 

  16. Hudson JA, Billington C, Carey-Smith G, Greening G. Bacteriophages as biocontrol agents in food. J. Food Prot. 68: 426–437 (2005)

    CAS  Google Scholar 

  17. Sulakvelidze A, Alavidze Z, Morris JG. Bacteriophage therapy. Antimicrob. Agents Ch. 45: 649–659 (2001)

    Article  CAS  Google Scholar 

  18. Hughes KA, Sutherland IW, Jones MV. Biofilm susceptibility to bacteriophage attack: The role of phage-borne polysaccharide depolymerase. Microbiology+ 144: 3039–3047 (1998)

    CAS  Google Scholar 

  19. Garcia P, Rodriguez L, Rodriguez A, Martinez B. Food biopreservation: Promising strategies using bacteriocins, bacteriophages, and endolysins. Trends Food Sci. Tech. 21: 373–382 (2010)

    Article  CAS  Google Scholar 

  20. Modi R, Hirvi Y, Hill A, Griffiths MW. Effect of phage on survival of Salmonella enteritidis during manufacture and storage of Cheddar cheese made from raw and pasteurized milk. J. Food Prot. 64: 927–933 (2001)

    CAS  Google Scholar 

  21. Martinez B, Obeso JM, Rodriguez A, Garcia P. Nisin-bacteriohage crossresistance in Staphylococcus aureus. Int. J. Food Microbiol. 122: 253–258 (2008)

    Article  CAS  Google Scholar 

  22. Lee YD, Kim JY, Park JH. Characteristics of coliphage ECP4 and potential use as a sanitizing agent for biocontrol of Escherichia coli O157:H7. Food Control 34: 255–260 (2013)

    Article  CAS  Google Scholar 

  23. Letkiewicz S, Miedzybrodzki R, Fortuna W, Weber-Dabrowska B, Górski A. Eradication of Enterococcus faecalis by phage therapy in chronic bacterial prostatitis—case report. Folia Microbiol. 54: 457–461 (2009)

    Article  CAS  Google Scholar 

  24. Otawa K, Hirakata Y, Kaku M, Nakai Y. Bacteriophage control of vancomycin-resistant enterococci in cattle compost. J. Appl. Microbiol. 113: 499–507 (2012)

    Article  CAS  Google Scholar 

  25. Lee YD, Park JH. Complete genome sequence of enterococcal bacteriophage SAP6. J. Virol. 86: 5402–5403 (2012)

    Article  CAS  Google Scholar 

  26. Sambrook, J, Russell DW. Molecular Cloning: A Laboratory Manual. 3rd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA (2001)

    Google Scholar 

  27. Kang TM, Park JH. Isolation and antibiotic susceptibility of Enterococcus spp. from fermented soy paste. J. Korean Soc. Food Sci. Nutr. 7: 714–720 (2012)

    Article  Google Scholar 

  28. Buzrul S, Öztürk P, Alpas H, Akcelik M. Thermal and chemical inactivation of lactococcal bacteriophages. LWT-Food Sci. Technol. 40: 1671–1677 (2007)

    Article  CAS  Google Scholar 

  29. Ackermann HW. Bacteriophage observations and evolution. Res. Microbiol. 154: 245–251 (2003)

    Article  CAS  Google Scholar 

  30. Hendrix RW. Bacteriophage genomics. Curr. Opin. Microbiol. 6: 506–511 (2003)

    Article  CAS  Google Scholar 

  31. Li S, Liu L, Zhu J, Zou L, Li M, Cong Y, Rao X, Hu X, Zhou Y, Chen Z, Hu F. Characterization and genome sequencing of a novel coliphage isolated from engineered Escherichia coli. Intervirology 53: 211–220 (2010)

    Article  CAS  Google Scholar 

  32. Coffey B, Rivas L, Duffy G, Coffey A, Ross RP, McAuliffe O. Assessment of Escherichia coli O157:H7-specific bacteriophages e11/2 and e4/1c in model broth and hide environments. Int. J. Food Microbiol. 147: 188–194 (2011)

    Article  Google Scholar 

  33. Guglielmotti DM, Mercanti DJ, Reinheimer JA, Quiberoni Adel L. Efficiency of physical and chemical treatments on the inactivation of dairy bacteriophages. Front. Microbiol. 11: 282 (2012)

    Google Scholar 

  34. Mishra CK, Choi TJ, Kang SC. Isolation and characterization of a bacteriophage F20 virulent to Enterobacter aerogenes. J. Gen. Virol. 93: 2310–2314 (2012)

    Article  CAS  Google Scholar 

  35. Lee YD, Park JH. The importance of bacteriophages in lactic acid bacteria. Curr. Top. LAB Probiotics 1: 43–49 (2013)

    Google Scholar 

  36. Zhang W, Mi Z, Yin X, Fan H, An X, Zhang Z, Chen J, Tong Y. Characterization of Enterococcus faecalis phage IME-EF1 and its endolysin. PLoS ONE 8: e80435 (2013)

    Article  Google Scholar 

  37. Parasion S, Kwiatek M, Mizak L, Gryko R, Bartoszcze M, Kocik J. Isolation and characterization of a novel bacteriophage φ4D lytic against Enterococcus faecalis strains. Curr. Microbiol. 65: 284–9 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Hyun Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YD., Chun, H. & Park, JH. Characteristics and growth inhibition of isolated bacteriophages for Enterococcus faecalis . Food Sci Biotechnol 23, 1357–1361 (2014). https://doi.org/10.1007/s10068-014-0186-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0186-1

Keywords

Navigation