Skip to main content
Log in

Optimization of omega-3 enriched-diacylglycerol production by enzymatic esterification using a response surface methodology

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Incorporation of an eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA) moiety into diacylglycerol (DAG) oil using lipase-catalyzed esterification was optimized using an ethyl ester form of EPA/DHA. A response surface methodology (RSM) was used to optimize reaction parameters (time, temperature, and substrate mole ratio) for incorporation of DHA and EPA into DAG oil. Predictive models for DHA+EPA contents of DAG and the amount of DAG produced after esterification were adequate and reproducible. DHA+EPA contents of DAG significantly increased with reaction time and substrate mole ratio (p<0.05). In contrast, the reaction temperature negatively affected the amount of DAG after esterification. Synthesis of DHA+EPA-enriched DAG was optimized for a maximum DAG content with the highest DHA+EPA content, in which 630.0 mg of DAG containing 34.8% DHA and EPA was predicted using the RSM model. The optimal reaction conditions were predicted at 20.6 h, 57.9 and a DHA/EPAenriched ethyl ester: DAG oil ratio of 2.5:1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maki KC, Davidson MH, Tsushima R, Matsuo N, Tokimitsu I, Umporowicz DM, Dicklin MR, Foster GS, Ingram KA, Anderson BD. Consumption of diacylglycerol oil as part of a reduced-energy diet enhances loss of body weight and fat in comparison with consumption of a triacylglycerol control oil. Am. J. Clin. Nutr. 76: 1230–1236 (2002)

    CAS  Google Scholar 

  2. Nagao T, Watanabe H, Goto N, Onizawa K, Taguchi H, Matsuo N, Yasukawa T, Tsushima R, Shimasaki H, Itakura H. Dietary diacylglycerol suppresses accumulation of body fat compared to triacylglycerol in men in a double-blind controlled trial. J. Nutr. 130: 792–797 (2000)

    CAS  Google Scholar 

  3. Taguchi H, Nagao T, Watanabe H, Onizawa K, Matsuo N, Tokimitsu I, Itakura H. Energy value and digestibility of dietary oil containing mainly 1, 3-diacylglycerol are similar to those of triacylglycerol. Lipids 36: 379–382 (2001)

    Article  CAS  Google Scholar 

  4. Taguchi H, Watanabe H, Onizawa K, Nagao T, Gotoh N, Yasukawa T, Tsushima R, Shimasaki H, Itakura H. Double-blind controlled study on the effects of dietary diacylglycerol on postprandial serum and chylomicron triacylglycerol responses in healthy humans. J. Am. Coll. Nutr. 19: 789–796 (2000)

    Article  CAS  Google Scholar 

  5. Shimada A, Ohashi A. Interfacial and emulsifying properties of diacylglycerol. Food Sci. Technol. Res. 9: 142–147 (2003)

    Article  CAS  Google Scholar 

  6. Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 23: e20–e30 (2003)

    Article  CAS  Google Scholar 

  7. Mayser P, Grimm H, Grimminger F. n-3 fatty acids in psoriasis. Brit. J. Nutr. 87: 77–82 (2002)

    Article  Google Scholar 

  8. Ling YQ, Nie HL, Su SN, Branford-White C, Zhu LM. Optimization of affinity partitioning conditions of papain in aqueous two-phase system using response surface methodology. Sep. Purif. Technol. 73: 343–348 (2010)

    Article  CAS  Google Scholar 

  9. Mune Mune MA, Minka SR, Mbome IL. Response surface methodology for optimisation of protein concentratepreparation from cowpea [Vigna unguiculata (L.) Walp]. Food Chem. 110: 735–741 (2008)

    Article  CAS  Google Scholar 

  10. Eom TK, Kong CS, Byun HG, Jung WK, Kim SK. Lipase catalytic synthesis of diacylglycerol from tuna oil and its anti-obesity effect in C57BL/6J mice. Process Biochem. 45: 738–743 (2010)

    Article  CAS  Google Scholar 

  11. Ravn HC, Damstrup ML, Meyer AS. Optimization of reaction parameters for enzymatic glyceride synthesis from fish oil: Ethyl esters versus free fatty acids. Biocatal. Agric. Biotechnol. 1: 273–279 (2012)

    CAS  Google Scholar 

  12. Torres C, Lin B, Hill CG. Lipase-catalyzed glycerolysis of an oil rich in eicosapentaenoic acid residues. Biotechnol. Lett. 24: 667–673 (2002)

    Article  CAS  Google Scholar 

  13. Zou Y, Xie C, Fan G, Gu Z, Han Y. Optimization of ultrasoundassisted extraction of melanin from Auricularia auricula fruit bodies. Innov. Food Sci. Emerg. Technol. 11: 611–615 (2010)

    Article  CAS  Google Scholar 

  14. Selmair PL, Koehler P. Molecular structure and baking performance of individual glycolipid classes from lecithins. J. Agr. Food Chem. 57: 5597–5609 (2009)

    Article  CAS  Google Scholar 

  15. Lutzke BS, Braughler JM. An improved method for the identification and quantitation of biological lipids by HPLC: Using laser light-scattering detection. J. Lipid Res. 31: 2127–2130 (1990)

    CAS  Google Scholar 

  16. Compton DL, Laszlo JA, Eller FJ, Taylor SL. Purification of 1, 2-diacylglycerols from vegetable oils: Comparison of molecular distillation and liquid CO2 extraction. Ind. Crop Prod. 28: 113–121 (2008)

    Article  CAS  Google Scholar 

  17. Hatzakis E, Agiomyrgianaki A, Kostidis S, Dais P. High-resolution NMR spectroscopy: An alternative fast tool for qualitative and quantitative analysis of diacylglycerol (DAG) oil. J. Am. Oil Chem. Soc. 88: 1695–1708 (2011)

    Article  CAS  Google Scholar 

  18. Lee JH, Son JM, Akoh CC, Kim MR, Lee KT. Optimized synthesis of 1, 3-dioleoyl-2-palmitoylglycerol-rich triacylglycerol via interesterification catalyzed by a lipase from Thermomyces lanuginosus. Nat. Biotechnol. 27: 38–45 (2010)

    CAS  Google Scholar 

  19. Hopkins C, Bernstein H. Applications of proton magnetic resonance spectra in fatty acid chemistry. Can. J. Chem. 37: 775–782 (1959)

    Article  CAS  Google Scholar 

  20. Srivastava A, Akoh CC, Chang SW, Lee GC, Shaw JF. Candida rugosa lipase LIP-1 catalyzed transesterification to produce human milk fat substitute. J. Agr. Food Chem. 54: 5175–5181 (2006)

    Article  CAS  Google Scholar 

  21. Yang T, Fruekilde MB, Xu X. Application of immobilized Thermomyces lanuginose lipase in interesterification. J. Am. Oil Chem. Soc. 80: 881–887 (2003).

    Article  CAS  Google Scholar 

  22. Feltes MMC, Villeneuve P, Baréa B, Barouh N, Oliveira JV, Oliveira D, Ninow JL. Enzymatic production of monoacylglycerols (MAG) and diacylglycerols (DAG) from fish oil in a solvent-free system. J. Am. Oil Chem. Soc. 89: 1057–1065 (2012)

    Article  CAS  Google Scholar 

  23. Martín Valverde L, González Moreno PA, Rodríguez Quevedo A, Hita Peña E, Jiménez Callejón MJ, Esteban Cerdán L, Molina Grima E, Robles Medina A. Concentration of docosahexaenoic Acid (DHA) by selective alcoholysis catalyzed by lipases. J. Am. Oil Chem. Soc. 89: 1633–1645 (2012)

    Article  Google Scholar 

  24. Pawongrat R, Xu X, H-Kittikun A. Physico-enzymatic production of monoacylglycerols enriched with very-long-chain polyunsaturated fatty acids. J. Sci. Food Agr. 88: 256–262 (2008)

    Article  CAS  Google Scholar 

  25. Senanayake SN, Shahidi F. Enzyme-assisted acidolysis of borage (Borago officinalis L.) and evening primrose (Oenothera biennis L.) oils: Incorporation of omega-3 polyunsaturated fatty acids. J. Agr. Food Chem. 47: 3105–3112 (1999)

    Article  CAS  Google Scholar 

  26. Hu JN, Abdul Alim M, Lee JH, Adhikari P, Lee KT. Production of lipase-catalyzed structured lipids from mustard oil with capric acid. Food Sci. Biotechnol. 18: 574–577 (2009)

    CAS  Google Scholar 

  27. Kristensen JB, Xu X, Mu H. Process optimization using response surface design and pilot plant production of dietary diacylglycerols by lipase-catalyzed glycerolysis. J. Agr. Food Chem. 53: 7059–7066 (2005)

    Article  CAS  Google Scholar 

  28. Wang W, Li T, Ning Z, Wang Y, Yang B, Yang X. Production of extremely pure diacylglycerol from soybean oil by lipase-catalyzed glycerolysis. Enzyme Microb. Technol. 49: 192–196 (2011)

    Article  CAS  Google Scholar 

  29. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, EscaleiraL A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76: 965–977 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeung Hee Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, JF., Wang, XY., Zhang, H. et al. Optimization of omega-3 enriched-diacylglycerol production by enzymatic esterification using a response surface methodology. Food Sci Biotechnol 23, 1129–1136 (2014). https://doi.org/10.1007/s10068-014-0154-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0154-9

Keywords

Navigation