Improving mineral availability in soymilk by dephosphorylation of phytic acid using an alkaline phytase from Bacillus amyloliquefaciens DS11

Abstract

To enhance mineral availability in soymilk, the alkaline phytase from Bacillus amyloliquefaciens DS11 was applied to degrade the phytic acid in soymilk, and resulting effects on mineral profiles were assessed. Nearly 60% of phytic acid was degraded within 25 min by treatment with 0.090 unit/mg of phytate, whereas most phytic acid was removed in 125 min using 0.18 unit/mg of phytate. Compared to a control, the free calcium, magnesium, phosphorus, and iron contents significantly (p<0.05) increased by 1.9, 1.8, 4.0, and 4.0×, respectively, after 125 min of reaction using 0.18 unit/mg of phytate. Free minerals were released from the phytate complex by enzymatic dephosphorylation, resulting in enhancement of mineral availability in soymilk. Alkaline phytase DS11 has a great potential for enhancing the mineral availability in neutral pH phytate-rich foods, like soymilk.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    de Mejia EG, Bradford T, Hasler C. The anticarcinogenic potential of soybean lectin and lunasin. Nutr. Rev. 61: 239–246 (2003)

    Article  Google Scholar 

  2. 2.

    Gibson RS, Perlas L, Hotz C. Improving the bioavailability of nutrients in plant foods at the household level. Proc. Nutr. Soc. 65: 160–168 (2006)

    CAS  Article  Google Scholar 

  3. 3.

    Harland BF, Morris ER. Phytate: A good or a bad food component? Nutr. Res. 15: 733–754 (1995)

    CAS  Article  Google Scholar 

  4. 4.

    Schröder B, Käppner H, Failing K, Pfeffer E, Breves G. Mechanisms of intestinal phosphate transport in small ruminants. Brit. J. Nutr. 74: 635–648 (1995)

    Article  Google Scholar 

  5. 5.

    Ritter MA, Morr CV, Thomas RL. In vitro digestibility of phytatereduced and phenolics-reduced soy protein isolates. J. Food Sci. 52: 325–327 (1987)

    CAS  Article  Google Scholar 

  6. 6.

    Liu B-L, Rafiq A, Tzeng Y-M, Rob A. The induction and characterization of phytase and beyond. Enzyme Microb. Tech. 22: 415–424 (1998)

    CAS  Article  Google Scholar 

  7. 7.

    Oh BC, Choi WC, Park S, Kim YO, Oh TK. Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl. Microbiol. Biot. 63: 362–372 (2004)

    CAS  Article  Google Scholar 

  8. 8.

    Park YJ, Park J, Park KH, Oh BC, Auh JH. Supplementation of alkaline phytase (DS11) in whole-wheat bread reduces phytate content and improves mineral solubility. J. Food Sci. 76: C791–C794 (2011)

    CAS  Article  Google Scholar 

  9. 9.

    Tang AL, Wilcox G, Walker KZ, Shah NP, Ashton JF, Stojanovska L. Phytase activity from Lactobacillus spp. in calcium-fortified soymilk. J. Food Sci. 75: M373–M376 (2010)

    CAS  Article  Google Scholar 

  10. 10.

    Sutardi, Buckle KA. The characteristics of soybean phytase. J. Food Biochem. 10: 197–216 (1986)

    CAS  Article  Google Scholar 

  11. 11.

    Oh BC, Chang BS, Park KH, Ha NC, Kim HK, Oh BH, Oh TK. Calcium-dependent catalytic activity of a novel phytase from Bacillus amyloliquefaciens DS11. Biochemistry 40: 9669–9676 (2001)

    CAS  Article  Google Scholar 

  12. 12.

    Engelen AJ, van der Heeft FC, Randsdorp PH, Smit EL. Simple and rapid determination of phytase activity. JAOAC Int. 77: 760–764 (1994)

    CAS  Google Scholar 

  13. 13.

    Ono T, Katho S, Mothizuki K. Influences of calcium and pH on protein solubility in soybean milk. Biosci. Biotech. Bioch. 57: 24–28 (1993)

    CAS  Article  Google Scholar 

  14. 14.

    Talamond P, Doulbeau S, Rochette I, Guyot JP. Anion-exchange high-performance liquid chromatography with conductivity detection for the analysis of phytic acid in food. J. Chromatogr. A 871: 7–12 (2000)

    CAS  Article  Google Scholar 

  15. 15.

    Kim OH, Kim YO, Shim JH, Jung YS, Jung WJ, Choi WC, Lee H, Lee SJ, Kim KK, Auh JH, Kim H, Kim JW, Oh BC. β-Propeller phytase hydrolyzes insoluble Ca2+-phytate salts and completely abrogates the ability of phytate to chelate metal ions. Biochemistry 49: 10216–10227 (2010)

    CAS  Article  Google Scholar 

  16. 16.

    Oh BC, Kim MH, Yun BS, Choi WC, Park SC, Bae SC, Oh TK. Ca2+-inositol phosphate chelation mediates the substrate specificity of β-propeller phytase. Biochemistry 45: 9531–9539 (2006)

    CAS  Article  Google Scholar 

  17. 17.

    Young GP, Rose IS, St John DJ. Haem in the gut. I. Fate of haemoproteins and the absorption of haem. J. Gastroen. Hepatol. 4: 537–545 (1989)

    CAS  Article  Google Scholar 

  18. 18.

    Sandberg A-S, Carlsson N-G, Svanberg U. Effects of inositol tri-, tetra-, penta-, and hexaphosphates on in vitro estimation of iron availability. J. Food Sci. 54: 159–161 (1989)

    CAS  Article  Google Scholar 

  19. 19.

    Sandberg A-S, Svanberg U. Phytate hydrolysis by phytase in cereals; effects on in vitro estimation of iron availability. J. Food Sci. 56: 1330–1333 (1991)

    CAS  Article  Google Scholar 

  20. 20.

    Subba Rao K, Narasinga Rao BS. Studies on iron chelation by phytate and the influence of other mineral ions on it. Nutr. Rep. Int. 28: 771–782 (1983)

    Google Scholar 

  21. 21.

    Saha PR, Weaver CM, Mason AC. Mineral bioavailability in rats from intrinsically labeled whole wheat flour of various phytate levels. J. Agr. Food Chem. 42: 2531–2535 (1994)

    CAS  Article  Google Scholar 

  22. 22.

    Barrientos L, Scott JJ, Murthy PPN. Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen. Plant Physiol. 106: 1489–1495 (1994)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joong-Hyuck Auh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kwon, DA., Park, S., Kwon, D. et al. Improving mineral availability in soymilk by dephosphorylation of phytic acid using an alkaline phytase from Bacillus amyloliquefaciens DS11. Food Sci Biotechnol 23, 1067–1072 (2014). https://doi.org/10.1007/s10068-014-0146-9

Download citation

Keywords

  • soymilk
  • alkaline phytase
  • phytic acid
  • mineral