Skip to main content
Log in

Identification and characterization of a novel angiotensin I-converting enzyme inhibitory peptide (ACEIP) from silkworm pupa

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The angiotensin I-converting enzyme inhibitory peptide (ACEIP) was isolated and characterized from silkworm pupae and purified using Sephadex G-25 gel filtration. The structure and physicochemical properties of pupa ACEIP were analyzed. The α-P3 fraction exhibited the most potent ACE inhibitory activity. After purification via semi-preparative reverse-phase HPLC (RP-HPLC) and HPLC, the α-P3-6-b component was revealed to have the highest ACE inhibitory activity (IC50=28.3 μg/mL). Edman degradation revealed a Val-Glu-Ile-Ser amino acid sequence in which novel active sequences were identified. Physicochemical property testing showed that purified pupa ACEIP exhibits good solubility, heat resistance, and acid resistance that all indicate ACEIP derived from silkworm pupa is an excellent food-derived ACEIP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vercruysse L, Smagghe G, Matsui T, Van Camp J. Purification and identification of an angiotensin I converting enzyme (ACE) inhibitory peptide from the gastrointestinal hydrolysate of the cotton leafworm, Spodopter a littoralis. Proc. Biochem. 43: 900–904 (2008)

    Article  CAS  Google Scholar 

  2. Coates D. The angiotens in converting enzyme (ACE). Int. J. Biochem. Cell. Biol. 35: 769–773 (2003)

    Article  CAS  Google Scholar 

  3. Murray BA, FitzGerald RJ. Angiotensin converting enzyme inhibitory peptides derived from food proteins: Biochemistry, bioactivity and production. Curr. Pharm. Des. 13: 773–791 (2007)

    Article  CAS  Google Scholar 

  4. Liu LL, Liu LY, Lu BY, Xia DZ, Zhang Y. Evaluation of antihypertensive and antihyperlipidemic effects of bamboo shoot angiotensin converting enzyme inhibitory peptide in vivo. J. Agr. Food Chem. 60: 11351–11358 (2012)

    Article  CAS  Google Scholar 

  5. Liu X, Zhang MS, Zhang G. Angiotensin converting enzyme (ACE) inhibitory, antihypertensive, and antihyperlipidaemic activities of protein hydrolysates from Rhopilema esculentum. Food Chem. 134: 2134–2140 (2012)

    Article  CAS  Google Scholar 

  6. Wang W, Wang N, Zhou Y, Zhang Y, Xu LH, Xu JF, Feng FQ, He GQ. Isolation of a novel peptide from silkworm pupae protein components and interaction characteristics to angiotensin Iconverting enzyme. Eur. Food Res. Technol. 232: 29–38 (2011)

    Article  CAS  Google Scholar 

  7. Wang W, Shen SR, Chen QH, Tang B, He GQ, Ruan H, Das UN. Hydrolyzates of silkworm pupae (Bombyx mori) protein is a new source of angiotensin I-converting enzyme inhibitory peptides (ACEIP). Curr. Pharm. Biotechnol. 9: 307–314 (2008)

    Article  CAS  Google Scholar 

  8. Li Y, Wang Y, Huang XZ, Kan JQ, Jin SK, He YP, Hu YQ, Liao C. Enzymatic preparation of ACE-inhibitory peptide from pupa protein. Shipin. Kexue. (Beijing) 11: 151–157 (2012)

    CAS  Google Scholar 

  9. Li Y, Huang XZ, Kan JQ, He J, Zhang HN. Study on macroporous resin’s purification of pupa ACE inhibitory peptides. Shipin. Gongye. Keji. 16: 281–288 (2012)

    Google Scholar 

  10. Astawan M, Wahyuni M, Yasuhara T, Yamada K, Tadokoro T, Maekawa A. Effects of angiotension I-converting enzyme inhibitory substances derived from indonesian dried-salted fish on blood pressure of rats. Biosci. Biotech. Bioch. 59: 425–429 (1995)

    Article  CAS  Google Scholar 

  11. Kumada Y, Hashimoto N, Hasan F, Terashima M, Nakanishi K, Jungbauer A, Katoh S. Screening of ACE-inhibitory peptides from a random peptide-displayed phage library using ACE-coupled liposomes. J. Biotechnol. 131: 144–149 (2007)

    Article  CAS  Google Scholar 

  12. Chushman DW, Cheung HS. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20: 1637–1648 (1971)

    Article  Google Scholar 

  13. Sheih IC, Fang TJ, Wu TK. Isolation and characterisation of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the algae protein waste. Food Chem. 115: 279–284 (2009)

    Article  CAS  Google Scholar 

  14. Bruno D, Ruedia. Mass spectrometry and protein analysis. Science 312: 212–217 (2006)

    Google Scholar 

  15. Bougatef A, Nedjar-Arroume N, Ravallec-Ple R, Leroy Y, Guillochon D, Barkia A, Nasri M. angiotensin I-converting enzyme (ACE) inhibitory activities of sardinelle (Sardinella aurita) byproducts protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases. Food Chem. 111: 350–356 (2008)

    Article  CAS  Google Scholar 

  16. Balti R, Nedjar-Arroume N, Adje EY, Guillochon D, Nasri M. Analysis of novel angiotensin I-converting enzyme inhibitory peptides from enzymatic hydrolysates of Cuttlefish (Sepia officinalis) muscle proteins. J. Agr. Food Chem. 58: 3840–3846 (2010)

    Article  CAS  Google Scholar 

  17. Quiroga AV, Aphalo P, Ventureira JL, Martinez EN, Anon MC. Physicochemical, functional and angiotensin converting enzyme inhibitory properties of amaranth (Amaranthus hypochondriacus) 7S globulin. J. Sci. Food Agr. 92: 397–403 (2010)

    Article  Google Scholar 

  18. Martin M, Wellner A, Ossowski I, Henle T. Identification and quantification of inhibitors for angiotensin-converting enzyme in hypoallergenic infant milk formulas. J. Agr. Food Chem. 56: 6333–6338 (2008)

    Article  CAS  Google Scholar 

  19. Wu JP, Ding XL. Characterization of inhibition and stability of soy protein derived angiotensin I-converting enzyme inhibitory peptides. Food Res. Int. 35: 367–375 (2002)

    Article  CAS  Google Scholar 

  20. Tomatsu M, Shimakage A, Shinbo M, Yamada S, Takahashi S. Novel angiotensin I-converting enzyme inhibitory peptides derived from soya milk. Food Chem. 136: 612–616 (2013)

    Article  CAS  Google Scholar 

  21. Barbana C, Boye JI. Angiotensin I-converting enzyme inhibitory properties of lentil protein hydrolysates: Determination of the kinetics of inhibition. Food Chem. 127: 94–101 (2011)

    Article  CAS  Google Scholar 

  22. Terashima M, Baba T, Ikemoto N, Katayama M, Morimoto T, Matsumura S. Novel angiotensin-converting enzyme (ACE) inhibitory peptides derived from boneless chicken leg meat. J. Agr. Food Chem. 58: 7432–7436 (2010)

    Article  CAS  Google Scholar 

  23. Sagardia I, Iloro I, Elortza F, Bald C. Quantitative structure-activity relationship based screening of bioactive peptides identified in ripened cheese. Int. Dairy J. 33: 184–190 (2013)

    Article  CAS  Google Scholar 

  24. Rho SJ, Lee JS, II Chung Y, Kim YW, Lee HG. Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from fermented soybean extract. Process. Biochem. 44: 490–493 (2009)

    Article  CAS  Google Scholar 

  25. Nakagomi K, Ebisu H, Sadakane Y, Fujii N, Akizawa T, Tanimura T. Properties and human origin of two angiotensin I-converting enzyme inhibitory peptides isolated from a tryptic hydrolysate of human serum albumin. Biol. Pharm. Bull. 23: 879–883 (2000)

    Article  CAS  Google Scholar 

  26. Cheison SC, Zhang W, Xu SY. Use of macroporous adsorption resin for simultaneous desalting and debittering of whey protein hydrolysates. Int. J. Food Sci. Technol. 42: 1228–1239 (2007)

    Article  CAS  Google Scholar 

  27. Eto Y, Ito T. Nishioka S. Angiotensin I converting enzymeinhibitory dipeptides in an alkaline protease hydrolyzate or whey protein. Nihon Eiyo Shokuryo Gakkai Shi 51: 355–359 (1998)

    Article  CAS  Google Scholar 

  28. Yang YJ, Yoshikawa M. Isolation and purification of angiotensin converting enzyme inhibitory peptides by high performance liquid chromatography. Se. Pu. 21: 202–205 (2003)

    CAS  Google Scholar 

  29. Miguel M, Alonso M, Salaices M. Antihypertensive, ACEinhibitory and vasodilator properties of an egg white hydrolysate: Effect of a simulated intestinal digestion. Food Chem. 104: 163–168 (2007)

    Article  CAS  Google Scholar 

  30. Matsui T, Li CH, Tanaka T, Maki T, Ossajima Y, Matsumoto K. Depressor effect of wheat germ hydrolysate and its novel angiotensin I-converting enzyme inhibitory peptide, Ile-Val-Tyr, and the metabolism in rat and human plasma. Biol. Pharm. Bull. 23: 427–431 (2000)

    Article  CAS  Google Scholar 

  31. Nakahara T, Yamaguchi H, Uchida R. Effect of temperature on the stability of various peptidases during peptide-enriched soy sauce fermentation. J. Biosci. Bioeng. 113: 355–359 (2012)

    Article  CAS  Google Scholar 

  32. Hwang JS. Impact of processing on stability of angiotensin Iconverting enzyme (ACE) inhibitory peptides obtained from tuna cooking juice. Food Res. Int. 43: 902–906 (2010)

    Article  CAS  Google Scholar 

  33. Jang A, Jo C, Lee M. Storage stability of the synthetic angiotensin converting enzyme (ACE) inhibitory peptides separated from beef sareoplasmic protein extracts at different pH, temperature, and gastric digestion. Food Sci. Biotechnol. 16: 572–575 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianquan Kan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, Y., Huang, X. et al. Identification and characterization of a novel angiotensin I-converting enzyme inhibitory peptide (ACEIP) from silkworm pupa. Food Sci Biotechnol 23, 1017–1023 (2014). https://doi.org/10.1007/s10068-014-0138-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0138-9

Keywords

Navigation