Skip to main content
Log in

Antihypertensive effect of few-flower wild rice (Zizania latifolia Turcz.) in spontaneously hypertensive rats

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The antihypertensive activity of few-flower wild rice was studied in spontaneously hypertensive rats (SHRs) with evaluation of blood pressure lowering effects and transcriptional levels of the sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) gene that is regulated by Angiotensin II (Ang II). SHRs were randomly divided into 5 groups with 6 rats each. The systolic blood pressure (SBP) reached the lowest point 3 h after administration of a single dose of paste made from few-flower wild rice stem powder. The SBP of SHR in the relatively high amount of RSP (HRSP) administrated group was reduced by approximately 30 mmHg, compared to the negative control group, and was not significantly different from the positive control IPP control group at a dose of 1.5 mg/kg body weight (p>0.05). RSP administrated SHRs showed a significantly higher SERCA2a transcription level than negative control SHRs (p<0.05). RSP administration had no negative effects on glycometabolism of SHR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National High Blood Pressure Education Program Coordinating Committee. The sixth report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Arch. Intern. Med. 157: 2413–2446 (1997)

    Article  Google Scholar 

  2. Ezzati M, Vander Hoorn S, Lawes CMM, Leach R, James WPT, Lopez AD, Rodgers A, Murray CJL. Rethinking the “diseases of affluence” paradigm: Global patterns of nutritional risks in relation to economic development. PLoS Med. 2: e133 (2005)

    Article  Google Scholar 

  3. Department of Disease Control, Ministry of Health, China, National Center for Cardiovascular Diseases China, China Hypertension League (2010). Chinese guidelines for the management of hypertension (2010). People’s Medical Publishing House, Beijing, China (2012)

    Google Scholar 

  4. Guyton AC, Coleman TG, Cowley AW, Scheel KW, Manning RD, Norman RA. Arterial pressure regulation: Overriding dominance of the kidneys in long-term regulation and in hypertension. Am. J. Med. 52: 584–594 (1972)

    Article  CAS  Google Scholar 

  5. Bakris GL, Mensah GA. Pathogenesis and clinical physiology of hypertension. Curr. Prob. Cardiology 28: 137–155 (2003)

    Article  Google Scholar 

  6. Asano K, Zisman LS, Bristow MR. Angiotensin II receptors in the normal and failing heart. Heart Fail. Rev. 3: 199–208 (1999)

    Article  CAS  Google Scholar 

  7. Magnier-Gaubil C, Herbert JM, Quarck R, Papp B, Corvazier E, Wuytack F, Lévy-Tolédano S, Enouf J. Smooth muscle cell cycle and proliferation: Relationship between calcium influx and sarcoendoplasmic reticulum Ca2+ATPase regulation. J. Biol. Chem. 271: 27788–27794 (1996)

    Article  CAS  Google Scholar 

  8. Cui ZQ, Chen X, Chen LY, Liu LS. Effect of angiotensin II on the transcription and regulation of sarcoplasmic reticulum Ca 2+, Mg 2+-ATPase gene in rat heart. Chin. J. Biochem. Mol. Biol. 15: 284–288 (1999)

    CAS  Google Scholar 

  9. Tong X, Evangelista A, Cohen RA. Targeting the redox regulation of SERCA in vascular physiology and disease. Curr. Opin. Pharmacol. 10: 133–138 (2010)

    Article  CAS  Google Scholar 

  10. Park PJ, Je JY, Kim SK. Free radical scavenging activity of chitooligosaccharides by electron spin resonance spectrometry. J. Agr. Food Chem. 51: 4624–4627 (2003)

    Article  CAS  Google Scholar 

  11. Kang DG, Kim YC, Sohn EJ, Lee YM, Lee AS, Yin MH, Lee HS. Hypotensive effect of butein via the inhibition of angiotensin converting enzyme. Biol. Pharm. Bull. 26: 1345–1347 (2003)

    Article  CAS  Google Scholar 

  12. Nyman U, Joshi P, Madsen LB, Pedersen TB, Pinstrup M, Rajasekharan S, George V, Pushpangadan P. Ethnomedical information and in vitro screening for angiotensin-converting enzyme inhibition of plants utilized as traditional medicines in Gujarat, Rajasthan, and Kerala (India). J. Ethnopharmacol. 60: 247–263 (1998)

    Article  CAS  Google Scholar 

  13. Balasuriya BWN, Rupasinghe HPV. Plant flavonoids as angiotensin converting enzyme inhibitors in regulation of hypertension. Funct. Food Health Dis. 5: 172–188 (2011)

    Google Scholar 

  14. Lee JE, Bae IY, Lee HG, Yang CB. Tyr-Pro-Lys, an angiotensin I-converting enzyme inhibitory peptide derived from broccoli (Brassica oleracea Italica). Food Chem. 99: 143–148 (2006)

    Article  CAS  Google Scholar 

  15. Qian BJ, Luo YL, Deng Y, Cao LK, Yang HS, Shen YP, Ping J. Chemical composition, angiotensin-converting enzyme-inhibitory activity and antioxidant activities of few-flower wild rice (Zizania latifolia Turcz.). J. Sci. Food Agr. 92: 159–164 (2012)

    Article  CAS  Google Scholar 

  16. Qian BJ, Xing MZ, Cui L, Deng Y, Xu YQ, Huang MN, Zhang SH. Antioxidant, antihypertensive, and immunomodulatory activities of peptide fractions from fermented skim milk with Lactobacillus delbrueckii ssp. bulgaricus LB340. J. Dairy Res. 78: 72–79 (2011)

    Article  CAS  Google Scholar 

  17. Nakamura Y, Yamamoto N, Sakai K, Takano T. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J. Dairy Sci. 78: 1253–1257 (1995)

    Article  CAS  Google Scholar 

  18. Ding FY, Qian BJ, Zhao X, Shen SQ, Deng Y, Wang DF, Zhang F, Sui ZQ, Jing P. VPPIPP and IPPVPP: Two hexapeptides innovated to exert antihypertensive activity. PLoS One 8: e62384 (2013)

    Article  CAS  Google Scholar 

  19. Lee CE, Hur HJ, Hwang JT, Sung MJ, Yang HJ, Kim HJ, Park JH, Kwon DY, Kim MS. Long-term consumption of platycodi radix ameliorates obesity and insulin resistance via the activation of AMPK pathways. Evid-Based Compl. Alt. 2012: 1–11 (2012)

    Google Scholar 

  20. Zhang H, Liang W, Yang X, Luo X, Jiang N, Ma H, Zhang D. Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. Plant Cell 22: 672–689 (2010)

    Article  CAS  Google Scholar 

  21. Collaboration PS. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360: 1903–1913 (2002)

    Article  Google Scholar 

  22. Schillaci G, Pirro M, Mannarino E. Assessing cardiovascular risk: Should we discard diastolic blood pressure? Circulation 119: 210–212 (2009)

    Article  Google Scholar 

  23. Nakamura Y, Yamamoto N, Sakai K, Takano T. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J. Dairy Sci. 78: 1253–1257 (1995)

    Article  CAS  Google Scholar 

  24. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly study. Lancet 342: 1007–1011 (1993)

    Article  CAS  Google Scholar 

  25. Hertog MG, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F, Giampaoli S, Jansen A, Menotti A, Nedeljkovic S, Pekkarinen M, Simic BS, Toshima H, Feskens EJ, Hollman PC, Katan MB. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch. Intern. Med. 155: 381–386 (1995)

    Article  CAS  Google Scholar 

  26. Hertog MG, Feskens EJ, Kromhout D. Antioxidant flavonols and coronary heart disease risk. Lancet 349: 699 (1997)

    Article  CAS  Google Scholar 

  27. Knekt P, Jarvinen R, Reunanen A, Maatela J. Flavonoid intake and coronary mortality in Finland: A cohort study. Brit. Med. J. 312: 478–481 (1996)

    Article  CAS  Google Scholar 

  28. Rimm EB, Katan MB, Ascherio A, Stampfer MJ, Willett WC. Relation between intake of flavonoids and risk for coronary heart disease in male health professionals. Ann. Intern. Med. 125: 384–389 (1996)

    Article  CAS  Google Scholar 

  29. Yochum L, Kushi LH, Meyer K, Folsom AR. Dietary flavonoid intake and risk of cardiovascular disease in postmenopausal women. Am. J. Epidemiol. 149: 943–949 (1999)

    Article  CAS  Google Scholar 

  30. Miller NJ. Flavonoids and phenylpropanoids as contributors to the antioxidant activity of fruit juices. pp. 387–403. In: Flavonoids in Health and Disease. Rice-Evans A, Packer L (eds). Marcel Dekker Inc., New York, NY, USA (1998)

    Google Scholar 

  31. Gryglewski RJ, Korbut R, Robak J, Swies J. On the mechanism of antithrombotic action of flavonoids. Biochem. Pharmacol. 36: 317–322 (1987)

    Article  CAS  Google Scholar 

  32. Duarte J, Pérez Vizcaíno F, Utrilla P, Jiménez J, Tamargo J, Zarzuelo A. Vasodilatory effects of flavonoids in rat aortic smooth muscle. Structure-activity relationships. Gen. Pharmacol. 24: 857–864 (1993)

    Article  CAS  Google Scholar 

  33. Duarte J, Pérez-Vizcaíno F, Zarzuelo A, Jiménez J, Tamargo J. Vasodilator effects of quercetin in isolated rat vascular smooth muscle. Eur. J. Pharmacol. 239: 1–7 (1993)

    Article  CAS  Google Scholar 

  34. Duarte J, Pérez-Palencia R, Vargas F, Ocete MA, Pérez-Vizcaino F, Zarzuelo A, Tamargo J. Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Brit. J. Pharmacol. 133: 117–124 (2001)

    Article  CAS  Google Scholar 

  35. Hermansen K. Diet, blood pressure, and hypertension. Brit. J. Nutr. 83: S113–S119 (2000)

    Article  CAS  Google Scholar 

  36. Boelsma E, Kloek J. Lactotripeptides and antihypertensive effects: A critical review. Brit. J. Nutr. 101: 776–786 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingjun Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Luo, Y., Qian, B. et al. Antihypertensive effect of few-flower wild rice (Zizania latifolia Turcz.) in spontaneously hypertensive rats. Food Sci Biotechnol 23, 439–444 (2014). https://doi.org/10.1007/s10068-014-0060-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0060-1

Keywords

Navigation