Skip to main content
Log in

Physicochemical properties of thermal alkaline treated pigeonpea (Cajanus cajan L.) flour

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Thermal alkaline treatment, normally used for corn, was applied to pigeonpea grains. Starch granules were isolated using wet milling and alkaline treatments. Effects of the calcium hydroxide [Ca(OH)2] concentration in the range of 0–1% (w/v) on granule structure, crystalline structure, chemical composition, and physicochemical, thermal, and pasting properties of isolated starch granules were determined. Compared to native samples, thermal alkaline treated samples had higher protein, lipid, calcium, and phosphorus contents, but lower starch and amylose contents. Thermal alkaline treatment increased starch granular size and gelatinization temperatures, but decreased relative crystallinity, gelatinization enthalpy, swelling power, solubility, amylose leaching, and the pasting viscosity. Amylose-lipid complexes were not found in thermal alkaline treated flours. As the Ca(OH)2 concentration increased, the amylose content, relative crystallinity, gelatinization temperature, and enthalpy also increased, but the swelling power, solubility, amylose leaching, and paste viscosity decreased. A higher Ca(OH)2 concentration produced more stable starch granules that resisted re-gelatinization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mendez-Montealvo G, Sánchez-Rivera MM, Paredes-López O, Bello-Pérez LA. Thermal and rheological properties of nixtamalized maize starch. Int. J. Biol. Macromol. 40: 59–63 (2006)

    Article  CAS  Google Scholar 

  2. Mendez-Montealvo G, Trejo-Espino JL, Paredes-López O, Bello-Pérez LA. Physicochemical and morphological characteristics of nixtamalized maize starch. Starch-Starke 59: 277–283 (2007)

    Article  CAS  Google Scholar 

  3. Sefa-Dedeh S, Cornelius B, Sakyi-Dawson E, Afoakwa EO. Effect of nixtamalization on the chemical and functional properties of maize. J. Food Chem. 86: 317–324 (2004)

    Article  CAS  Google Scholar 

  4. Rojas-Molina I, Gutiérrez E, Rojas A, Cortés-Álvarez M, Campos-Solís L, Hernández-Urbiola M, Arjona JL, Cornejo A, Rodríguez-García ME. Effect of temperature and steeping time on calcium and phosphorus content in nixtamalized corn flours obtained by traditional nixtamalization process. Cereal Chem. 86: 516–521 (2009)

    Article  CAS  Google Scholar 

  5. Gómez MH, McDonough CM, Rooney LW, Waniska RD. Changes in corn and sorghum during nixtamalization and tortilla baking. J. Food Sci. 54: 330–336 (1989)

    Article  Google Scholar 

  6. Gómez MH, Waniska RD, Rooney LW. Starch characterization of nixtamalized corn flour. Cereal Chem. 68: 578–582 (1991)

    Google Scholar 

  7. Mondragón M, Bello-Pérez LA, Agama E, Melo A, Betancur-Ancona D, Peña JL. Effect of nixtamalization on the modification of the crystalline structure of maize starch. Carbohyd. Polym. 55: 411–418 (2004)

    Article  Google Scholar 

  8. Gómez MH, Waniska RD, Rooney LW. Effects of nixtamalization and grinding conditions on starch in masa. Starch-Starke 42: 475–482 (1990)

    Article  Google Scholar 

  9. Pineda-Gómez P, Rosales-Rivera A, Rodríguez-García ME. Modeling calcium and water intake in threshed corn grain during thermo-alkaline treatment. J. Food Eng. 113: 434–441 (2012)

    Article  Google Scholar 

  10. Rodríguez ME, Yáñez-Limón M, Alvarado-Gil JJ, Vargas H, Sánchez-Sinencio F, Figueroa JDC, Martínez-Bustos F, Martínez-Montes J L, González-Hernández J, Silva MD, Miranda LCM. Influence of the structural changes during alkaline cooking on the thermal, rheological, and dielectric properties of corn tortillas. Cereal Chem. 73: 593–600 (1996)

    Google Scholar 

  11. Mondragón M, Mendoza-Martýnez AM, Bello-Perez L A, Pena JL. Viscoelastic behavior of nixtamalized maize starch gels. Carbohyd. Polym. 65: 314–320 (2006)

    Article  Google Scholar 

  12. González R, Reguera E, Mendoza L, Figueroa JM, Sánchez-Sinencio F. Physicochemical changes in the hull of corn grains during their alkaline cooking. J. Agr. Food Chem. 52: 3831–3837 (2004)

    Article  Google Scholar 

  13. Norton G, Bliss FA, Bressani R. Biochemical and Nutritional attributes of grain legumes. pp. 73–114. In: Grain Legume Crops. Summerfield RJ, Roberts EH. (eds). Collins and Sons, Ltd., Collins, London, UK 1985)

  14. Nwokolo E. Nutritional evaluation of pigeon pea meal. Plant. Foods Hum. Nutr. 37: 283–290 (1987)

    Article  CAS  Google Scholar 

  15. Duhan A, Khetarpaul N, Bishnoi S. Content of phytic acid and HCl-extractability of calcium, phosphorus and iron as affected by various domestic processing and cooking methods. Food Chem. 78: 9–14 (2002)

    Article  CAS  Google Scholar 

  16. Lawal OS, Adebowale KO. Physicochemical characteristics and thermal properties of chemically modified jack bean (Canavalia ensiformis) starch. Carbohyd. Polym. 60: 331–341 (2005)

    Article  CAS  Google Scholar 

  17. Nayouf M, Loisel C, Doublier JL. Effect of thermomechanical treatment on the rheological properties of cross linked waxy corn starch. J. Food Eng. 59: 209–219 (2003)

    Article  Google Scholar 

  18. AOAC. Official methods of analysis of AOAC Intl. 18th ed. Association of Official Analytical Communities, Gaithersburg, MD, USA (2005)

    Google Scholar 

  19. Holm J, Björck I, Drews A, Asp NG. A rapid method for the analysis of starch. Starch-Starke 38: 224–226 (1986)

    Article  CAS  Google Scholar 

  20. Juliano BO. A Simplified assay for milled rice amylose. Cereal Sci. Today 16: 334–360 (1971)

    Google Scholar 

  21. Heyns K. Einheitliche analysen methoden für stärke und stärke hydrolysen produkte. Starch-Starke 11: 251–271 (1959)

    Article  Google Scholar 

  22. Nara S, Komiya T. Studies on the relationship between water-saturated state and crystallinity by the diffraction method for moistened potato starch. Starch-Starke 35: 407–410 (1983)

    Article  CAS  Google Scholar 

  23. Mestres C, Matencio F, Pons B, Yajid M, Fleidel GA. Rapid method for the determination of amylose content by using differential scanning calorimetry. Starch-Starke 48: 2–6 (1996)

    Article  CAS  Google Scholar 

  24. Ceballos H, Sanchez T, Morante N, Fregene M. Dufour D, Smith A, Denyer K, Perez J, Calle F, Mestres C. Discovery of an amylosefree starch mutant in cassava (Manihot esculenta Crantz). J. Agr. Food Chem. 55: 7469–7476 (2006)

    Article  Google Scholar 

  25. ISO 6647-2. Determination of Amylase Content, Part 2. Routine Method. International Organization for Standardization, Geneva, Switzerland. pp. 1–13 (2003)

    Google Scholar 

  26. Oosten BJ, Breda. Interactions between starch and electrolytes. Starch-Starke 42: 327–330 (1990)

    Article  CAS  Google Scholar 

  27. Guzmán AQ, Flores MEJ, Escobedo RM, Guerrero LC, Feria JS. Changes on the structure, consistency, physicochemical and viscoelastic properties of corn (Zea mays sp.) under different nixtamalization conditions. Carbohyd. Polym. 78: 908–916 (2009)

    Article  Google Scholar 

  28. Reguera E, Yee-Madeira H, Fernández J, Sánchez-Sinencio F. On the state of Ca in nixtamalized corn grains. pp. 221–238. In: Topics in Contemporary Physics. Heras JA, Jiménez RV (eds). Monash Litho, Mexico, DF, Mexico (2000)

    Google Scholar 

  29. French D. Organization of starch granules. Vol. II, pp. 183–207. In: Starch: Chemistry and Technology. Whistler RL, BeMiller JN, Paschall EF (eds). Academic Press, Orlando, FL, USA (1984)

    Chapter  Google Scholar 

  30. Horng JL. The isolation and characterization of starches from legume grains and their application in food formulations. PhD Thesis, RMIT University, Melbourne, Australia (2007)

    Google Scholar 

  31. Hoover R, Swamidas G, Vasanthan T. Studies on the physicochemical properties of native, defatted, and heat-moisture treated pigeon pea (Cajanus cajan L.) starch. Carbohyd. Res. 246: 185–203 (1993)

    Article  CAS  Google Scholar 

  32. Rendleman JA. Metal-polysaccharide complexes-Part II. Food Chem. 3: 127–162 (1978)

    Article  CAS  Google Scholar 

  33. Matsuki J, Park J-Y, Shiroma R, Ike M, Yamamoto K, Tokuyasu K. Effect of lime treatment and subsequent carbonation on gelatinization and saccharification of starch granules. Starch-Starke 64: 452–460 (2012)

    CAS  Google Scholar 

  34. Slade L, Levine H, Wang M, Ievolella J. DSC analysis of starch thermal properties related to functionality in low-moisture baked goods. J. Thermal Anal. 47: 1299–1314 (1996)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasawadee Pradipasena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roskhrua, P., Tran, T., Chaiwanichsiri, S. et al. Physicochemical properties of thermal alkaline treated pigeonpea (Cajanus cajan L.) flour. Food Sci Biotechnol 23, 381–388 (2014). https://doi.org/10.1007/s10068-014-0053-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0053-0

Keywords

Navigation