Skip to main content
Log in

Production of palm oil-based diacylglycerol using Lecitase Ultra-catalyzed glycerolysis and molecular distillation

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Diacylglycerol (DAG) was prepared via glycerolysis of palm oil catalyzed by Lecitase Ultra (LU), a novel phospholipase from the fusion of lipase genes from Thermomyces lanuginose and phospholipase genes from Fusarium oxysporum. Glycerolysis was performed in a solvent-free system. The optimized reaction conditions were: a glycerol/palm oil mole ratio of 7.5:1, initial substrate water content of 5%, substrate enzyme load of 2%, reaction temperature of 40°C, and reaction time of 8 h. In a scale-up reaction, a DAG content of 59.5% in the lipid layer was achieved. Through a two-step molecular distillation, the composition of the target product was 88.1% DAG, 2.8% TAG, 9.0% MAG, and 0.1% FFA. The fatty acid composition of the DAG oil, determined using GC-MS, was enriched compared with the original palm oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fureby AM, Tian L, Adlercreutz P, Mattiasson B. Preparation of diglycerides by lipase-catalyzed alcoholysis of triglycerides. Enzyme Microb. Technol. 20: 198–206 (1997)

    Article  CAS  Google Scholar 

  2. Lo SK, Tan CP, Long K, Yusoff MSA, Lai OM. Diacylglycerol oil-properties, processes and products: A review. Food Bioprocess Technol. 1: 223–233 (2008)

    Article  Google Scholar 

  3. Eom TK, Kong CS, Byun HG, Jung WK, Kim SK. Lipase catalytic synthesis of diacylglycerol from tuna oil and its anti-obesity effect in C57BL/6J mice. Process Biochem. 45: 738–743 (2010)

    Article  CAS  Google Scholar 

  4. Rosu R, Yasui M, Iwasaki Y, Yamane T. Enzymatic synthesis of symmetrical 1,3-diacylglycerols by direct esterification of glycerol in solvent-free system. J. Am. Oil Chem. Soc. 76: 839–843 (1999)

    Article  CAS  Google Scholar 

  5. Yang TK, Zhang H, Mu HL, Sinclair AJ, Xu XB. Diacylglycerols from butterfat: production by glycerolysis and short-path distillation and analysis of physical properties. J. Am. Oil Chem. Soc. 81: 979–987 (2004)

    Article  CAS  Google Scholar 

  6. Cheirsilp B, Kaewthong W, H-Kittikun A. Kinetic study of glycerolysis of palm olein for monoacylglycerol production by immobilized lipase. Biochem. Eng. J. 35: 71–80 (2007)

    Article  CAS  Google Scholar 

  7. Kasche V. Mechanism and yields in enzyme catalysed equilibrium and kinetically controlled synthesis of β-lactam antibiotics, peptides and other condensation products. Enzyme Microb. Technol. 8: 4–16 (1986)

    Article  CAS  Google Scholar 

  8. Fregolente PBL, Pinto GMF, Wolf-Maciel MR, Filho RM. Monoglyceride and diglyceride production through lipase-catalyzed glycerolysis and molecular distillation. Appl. Biochem. Biotechnol. 160: 1879–1887 (2010)

    Article  CAS  Google Scholar 

  9. Amir HS, Tan CP, Lai OM. Phase behavior of palm oil in blends with palm-based diacylglycerol. J. Am. Oil Chem. Soc. 88: 1857–1865 (2011)

    Article  Google Scholar 

  10. Cheong LZ, Tan CP, Long K, Yusoff MSA, Arifin N, Lo SK, Lai OM. Production of a diacylglycerol-enriched palm olein using lipase-catalyzed partial hydrolysis: Optimization using response surface methodology. Food Chem. 105: 1614–1622 (2007)

    Article  CAS  Google Scholar 

  11. Wang Y, Zhao MM, Ou SY, Song KK, Han X. Preparation of diacylglycerol-enriched palm olein by phospholipase A1-catalyzed partial hydrolysis. Eur. J. Lipid Sci. Technol. 111: 652–662 (2009)

    Article  CAS  Google Scholar 

  12. Bojsen K, Svendsen A, Fuglsang CC, Patear S, Borch K, Vind J, Petri AG, Gladd SS, Budolfsen G, Schroder GSO. Novozymes A/S, Denmark. PCT Internacional Application WO 2000/32758 (2000)

    Google Scholar 

  13. Fernandez-Lorente G, Filice M, Terreni M, Guisan JM, Fernandez-Lafuente R, Palomo JM. Lecitase® Ultra as regioselective biocatalyst in the hydrolysis of fully protected carbohydrates strong modulation by using different immobilization protocols. J. Mol. Catal. B-Enzym. 51: 110–117 (2008)

    Article  CAS  Google Scholar 

  14. Sheelu G, Kavitha G, Fadnavis NW. Efficient immobilization of Lecitase in gelatin hydrogel and degumming of rice bran oil using a spinning basket reactor. J. Am. Oil Chem. Soc. 85: 739–748 (2008)

    Article  CAS  Google Scholar 

  15. Yang B, Wang YH, Yang JG. Optimization of enzymatic degumming process for rapeseed oil. J. Am. Oil Chem. Soc. 83:653–658 (2006)

    Article  CAS  Google Scholar 

  16. Mishra MK, Kumaraguru T, Sheelu G, Fadnavis NW. Lipase activity of Lecitase® Ultra: Characterization and applications in enantioselective reactions. Tetrahedron-Asymmetr 20: 2854–2860 (2009)

    Article  CAS  Google Scholar 

  17. Liu N, Wang Y, Zhao Q, Zhang Q, Zhao M. Fast synthesis of 1,3-DAG by Lecitase® Ultra-catalyzed esterification in solvent-free system. Eur. J. Lipid Sci. Technol. 113: 973–979 (2011)

    Article  CAS  Google Scholar 

  18. Brady D, Jordaan J. Advances in enzyme immobilization. Biotechnol. Lett. 31: 1639–1650 (2009)

    Article  CAS  Google Scholar 

  19. Iyer PV, Ananthanarayan L. Enzyme stability and stabilization-Aqueous and non-aqueous environment. Process Biochem. 43: 1019–1032 (2008)

    Article  CAS  Google Scholar 

  20. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40: 1451–1463 (2007)

    Article  CAS  Google Scholar 

  21. Cowan DA, Fernandez-Lafuente R. Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb. Technol. 49: 326–346 (2011)

    Article  CAS  Google Scholar 

  22. Fernandez-Lorente G, Palomo JM, Guisan JM, Fernandez-Lafuente R. Effect of the immobilization protocol in the activity, stability, and enantioslectivity of Lecitase® Ultra. J. Mol. Catal. B-Enzym. 47: 99–104 (2007)

    Article  CAS  Google Scholar 

  23. Garcia HS, Kim IH, Lopez-Hernandez A, Hill Jr CG. Enrichment of lecithin with n-3 fatty acids by acidolysis using immobilized phospholipase A1. Grasas Aceites 59: 368–374 (2008)

    Article  CAS  Google Scholar 

  24. Mikov M, Lutisan J, Cvengros J. Balance equations for molecular distillation. Separ. Sci. Technol. 32: 3051–3066 (1997)

    Article  Google Scholar 

  25. Hirota Y, Nagao T, Watanabe Y, Suenaga M, Nakai S, Kitano M, Sugihara A, Shimada Y. Purification of steryl esters from soybean oil deodorizer distillate. J. Am. Oil Chem. Soc. 80: 341–346 (2003)

    Article  CAS  Google Scholar 

  26. Wu W, Wang C, Zheng J. Optimization of deacidification of lowcalorie cocoa butter by molecular distillation. LWT-Food Sci. Technol. 46: 563–570 (2012)

    Article  CAS  Google Scholar 

  27. Zhong NJ, Li L, Xu XB, Cheong LZ, Li B, Hu SQ, Zhao XH. An efficient binary solvent mixture for monoacylglycerol synthesis by enzymatic glycerolysis. J. Am. Oil Chem. Soc. 86: 783–789 (2009)

    Article  CAS  Google Scholar 

  28. Monot F, Borzeix F, Bardin M, Vandecasteele JP. Enzymatic esterification in organic media: role of water and organic solvent in kinetics and yield of butyl butyrate synthesis. Appl. Microbiol. Biotechnol. 35: 759–765 (1991)

    Article  CAS  Google Scholar 

  29. Kruger RL, Valerio A, Balen M, Ninow JL, Oliveira JV, Oliveira D, Corazza ML. Improvement of mono and diacylglycerol production via enzymatic glycerolysis in tert-butanol system. Eur. J. Lipid Sci. Technol. 112: 921–927 (2010)

    Article  Google Scholar 

  30. Kristensen JB, Xu X, Mu H. Diacylglycerol synthesis by enzymatic glycerolysis: Screening of commercially available lipase. J. Am. Oil Chem. Soc. 82: 329–334 (2005)

    Article  CAS  Google Scholar 

  31. Li NW, Zong MH, Wu H. Highly efficient transformation of waste oil to biodiesel by immobilized lipase from Penicillium expansum. Process Biochem. 44: 685–688 (2009)

    Article  CAS  Google Scholar 

  32. Wang W, Li T, Ning Z, Wang Y, Yang B, Yang X. Production of extremely pure diacylglycerol from soybean oil by lipase-catalyzed glycerolysis. Enzyme Microb. Technol. 49: 192–196 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouming Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Wang, Y., Zhao, Q. et al. Production of palm oil-based diacylglycerol using Lecitase Ultra-catalyzed glycerolysis and molecular distillation. Food Sci Biotechnol 23, 365–371 (2014). https://doi.org/10.1007/s10068-014-0051-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0051-2

Keywords

Navigation