Skip to main content
Log in

Antioxidant capacity of japchae, Korean stir-fried sweet potato noodles with vegetables

  • Research Note
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript


Antioxidant capacities of japchae, a Korean traditional food were investigated. Japchae showed concentration dependent radical scavenging abilities with half maximal inhibitory concentration values (IC50) of 0.68 and 1.36 mg/mL from DPPH and ABTS assays, respectively. Positive correlations were observed between radical scavenging effects and the contents of total polyphenol (TPC), retinol, β-carotene, and ascorbic acid. Lipid peroxidation was inhibited by japchae with IC50 values of 1.49 and 1.40 mg/mL based on ferric thiocyanate (FTC) and thiobarbituric acid reactive substances (TBARS) assays, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Wolfe K, Xianzhong WU, Liu RH. Antioxidant activity of apple peels. J. Agr. Food Chem. 41: 609–614 (2003)

    Article  Google Scholar 

  2. Kaliora AC, Dedoussis GVZ, Schumidt H. Dietary antioxidants in preventing atherogenesis. Athetosclerosis 187: 1–17 (2006)

    Article  CAS  Google Scholar 

  3. Japchae. Available from: Accessed Jan. 5, 2012.

  4. Japchae. Available from: Accessed Dec. 17, 2012.

  5. Mo EK, Kim SM, Yang SA, Oh CJ, Sung CK. Assessment of antioxidant capacity of sedum (Sedum sarmentosum) as a valuable natural antioxidant source. Food Sci. Biotechnol. 20: 1061–1067 (2011)

    Article  CAS  Google Scholar 

  6. Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19: 669–675 (2006)

    Article  CAS  Google Scholar 

  7. AOAC. Official Method of Analysis of AOAC Intl. 18th ed. Method 2001.13. Association of Official Analytical Communities, Gaithersburg, Maryland, VA, USA (2006)

    Google Scholar 

  8. Szpylka J, deVries JW. Determination of β-carotene in supplements and raw materials by reversed phase high pressure liquid chromatography. J. AOAC Int. 88: 1279–1291 (2005)

    CAS  Google Scholar 

  9. Davies SHR, Masten SJ. Spectrophotometic method for ascorbic acid using dichlorophenolindophenol: elimination of the interference due to iron. Anal. Chim. Acta 248: 225–227 (1991)

    Article  CAS  Google Scholar 

  10. Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agr. Food Chem. 53: 4290–4302 (2005)

    Article  CAS  Google Scholar 

  11. Gülçin, I, Huyut Z, Elmastas M, Aboul-Enein HY. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 3: 43–53 (2010)

    Article  Google Scholar 

  12. Gulcin I. Antioxidant and antiradical activities of l-carnitine. Life Sci. 78: 803–811 (2006)

    Article  Google Scholar 

  13. Prabha MR, Vasantha K. Antioxidant, cytotoxicity and polyphenolic content of Calotropis procera (Ait.) R. Br. Flowers. J. Appl. Pharmaceu. Sci. 1: 136–140 (2011)

    Google Scholar 

  14. Kohen R, Yamamoto Y, Cundy KC, Ames BN. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. P. Natl. Acad. Sci. 85: 3175–3179 (1988)

    Article  CAS  Google Scholar 

  15. Antonini FM, Petruzzi E, Pinzani P, Orlando C, Poggesi M, Serio M, Pazzagli M, Masotti G. The meat in the diet of aged subjects and the antioxidant effects of carnosine. Arch. Gerontol. Geriatr. Suppl. 8: 714 (2002)

    Google Scholar 

  16. Intarapichet KO, Maikhunthod B. Heat and ultrafiltration extraction of broiler meat carnosine and its antioxidant activity. Meat Sci. 71: 364–374 (2005)

    Article  Google Scholar 

  17. Peiretti PG, Medana C, Visentin S, Bello FD, Meineri G. Effect of cooking method on carnosine and its homologues, pentosidine and thiobarbituric acid-reactive substance contents in beef and turkey meat. Food Chem. 132: 80–85 (2012)

    Article  CAS  Google Scholar 

  18. Ramalho HM, Santos W, Medeiros VP, Silva KH, Dimenstein R. Effect of thermal processing on retinol levels of free-range and caged hen eggs. Int. J. Food Sci. Nutr. 57: 244–248 (2006)

    Article  CAS  Google Scholar 

  19. Rural Resources Development Institute. 8th Revision Food Composition Table. Rural Development Administration, Suwon, Korea. pp. 201–284 (2011)

    Google Scholar 

  20. Inocent G, Adelaide DM, Gisele EL, Solange MOR, Richard EA, Elie F. Impact of three cooking methods (steaming, roasting on charcoal, and frying) on the β-carotene and vitamin C contents of plantain and sweet potato. Am. J. Food Technol. 6: 994–1001 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Eun Kyoung Mo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.Y., Mo, E.K. Antioxidant capacity of japchae, Korean stir-fried sweet potato noodles with vegetables. Food Sci Biotechnol 23, 361–364 (2014).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: