Skip to main content

Mung bean coat ameliorates hyperglycemia and the antioxidant status in type 2 diabetic db/db mice

Abstract

The hypoglycemic and antioxidant effect of mung bean coat (MBC) in an animal model of type 2 diabetes was investigated. A 95% ethanol extract of MBC inhibited yeast α-glucosidase activity by 48.6% in vitro, which was 1.4× stronger than inhibition by acarbose at a concentration of 0.5 mg/mL. Five week old db/db mice were fed an AIN-93G diet or a diet containing the MBC extract at 1% for 7 weeks. Blood glycated hemoglobin and serum glucose levels, as well as the homeostasis model assessment for insulin resistance in MBC group mice, were significantly (p<0.01) lower than in control group mice. Consumption of the MBC extract reduced thiobarbituric acid reactive substance levels and elevated activities of superoxide dismutase, catalase, and glutathione peroxidase in the liver, compared with the control group. MBC can be effective for improving hyperglycemia and the antioxidant status in type 2 diabetes mellitus.

This is a preview of subscription content, access via your institution.

References

  1. Cheng D. Prevalence, predisposition and prevention of type II diabetes. Nutr. Metab. 2: 29 (2005)

    Article  Google Scholar 

  2. Kahn SE. The relative contributions of insulin resistance and betacell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46: 3–19 (2003)

    CAS  Article  Google Scholar 

  3. O’Keefe JH, Miles JM, Harris WH, Moe RM, McCallister BD. Improving the adverse cardiovascular prognosis of type 2 diabetes. Mayo. Clin. Proc. 74: 171–180 (1999)

    Article  Google Scholar 

  4. Bressler R, Johnson D. New pharmacological approaches to therapy of NIDDM. Diabetes Care 15: 792–805 (1992)

    CAS  Article  Google Scholar 

  5. Yao Y, Cheng X, Wang L, Wang S, Ren G. Biological potential of sixteen legumes in China. Int. J. Mol. Sci. 12: 7048–7058 (2011)

    CAS  Article  Google Scholar 

  6. Fujita H, Yamagami T, Ohshima K. Fermented soybean-derived water-soluble Touchi extract inhibits alpha-glucosidase and is antiglycemic in rats and humans after single oral treatments. J. Nutr. 131: 1211–1213 (2001)

    CAS  Google Scholar 

  7. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New Engl. J. Med. 329: 977–986 (1993)

    Article  Google Scholar 

  8. Ceriello A. Oxidative stress and diabetes-associated complications. Endocr. Pract. 12(Suppl 1): 60–62 (2006)

    Article  Google Scholar 

  9. Maritim AC, Sanders RA, Watkins JB 3rd. Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol. 17: 24–38 (2003)

    CAS  Article  Google Scholar 

  10. Kaneto H, Nakatani Y, Kawamori D, Miyatsuka T, Matsuoka TA, Matsuhisa M, Yamasaki Y. Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic β-cell dysfunction and insulin resistance. Int. J. Biochem. Cell Biol. 37: 1595–1608 (2005)

    CAS  Article  Google Scholar 

  11. Sinclair AJ, Girling AJ, Gray L, Lunec J, Barnett AH. An investigation of the relationship between free radical activity and vitamin C metabolism in elderly diabetic subjects with retinopathy. Gerontology 38: 268–274 (1992)

    CAS  Article  Google Scholar 

  12. Lean ME, Noroozi M, Kelly I, Burns J, Talwar D, Sattar N, Crozier A. Dietary flavonols protect diabetic human lymphocytes against oxidative damage to DNA. Diabetes 48: 176–181 (1999)

    CAS  Article  Google Scholar 

  13. Park SJ, Choe EO, Kim JI, Shin MS. Physiochemical properties of mung bean starches in different Korean varieties and their gel textures. Food Sci. Biotechnol. 21: 1359–1365 (2012)

    CAS  Article  Google Scholar 

  14. Yao Y, Chen F, Wang M, Wang J, Ren G. Antidiabetic activity of mung bean extracts in diabetic KK-Ay mice. J. Agr. Food Chem. 56: 8869–8873 (2008)

    CAS  Article  Google Scholar 

  15. Sreerama YN, Takahashi Y, Yamaki K. Phenolic antioxidants in some Vigna species of legumes and their distinct inhibitory effects on α-glucosidase and pancreatic lipase activities. J. Food Sci. 77: C927–C933 (2012)

    CAS  Article  Google Scholar 

  16. Duh PD, Yen WJ, Du PC, Yen GC. Antioxidant activity of mung bean hulls. J. Am. Oil Chem. Soc. 74: 1059–1063 (1997)

    CAS  Article  Google Scholar 

  17. Cao D, Li H, Yi J, Zhang J, Che H, Cao J, Yang L, Zhu C, Jiang W. Antioxidant properties of the mung bean flavonoids on alleviating heat stress. PLoS One 6: e21071 (2011)

    CAS  Article  Google Scholar 

  18. Watanabe J, Kawabata J, Kurihara H, Niki R. Isolation and identification of α-glucosidase inhibitors from Tochu-cha (Eucommia ulmoides). Biosci. Biotechnol. Biochem. 61: 177–178 (1997)

    CAS  Article  Google Scholar 

  19. Reeves PG, Nielsen FH, Fahey GC. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition Ad Hoc Writing Committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123: 1939–1951 (1993)

    CAS  Google Scholar 

  20. Kim AR, Jeong SM, Kang MJ, Jang YH, Choi HN, Kim JI. Lotus leaf alleviates hyperglycemia and dyslipidemia in animal model of diabetes mellitus. Nutr. Res. Pract. 7: 166–171 (2013)

    CAS  Article  Google Scholar 

  21. Haffner SM, Miettinen H, Stern MP. The homeostasis model in the San Antonio Heart Study. Diabetes Care 20: 1087–1092 (1997)

    CAS  Article  Google Scholar 

  22. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 351–358 (1979)

    CAS  Article  Google Scholar 

  23. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254 (1976)

    CAS  Article  Google Scholar 

  24. Aebi H. Catalase. pp. 673–684. In: Methods of Enzymatic Analysis. Academic Press, New York, NY, USA (1974)

    Chapter  Google Scholar 

  25. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70: 158–169 (1967)

    CAS  Google Scholar 

  26. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 469–474 (1974)

    CAS  Article  Google Scholar 

  27. Srinivasan K, Ramarao P. Animal models in type 2 diabetes research: An overview. Indian J. Med. Res. 125: 451–472 (2007)

    CAS  Google Scholar 

  28. Holman RR, Cull CA, Turner RC. A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years (U.K. Prospective Diabetes Study 44). Diabetes Care 22: 960–964 (1999)

    CAS  Article  Google Scholar 

  29. Meneilly GS, Ryan EA, Radziuk J, Lau DC, Yale JF, Morais J, Chiasson JL, Rabasa-Lhoret R, Maheux P, Tessier D, Wolever T, Josse RG, Elahi D. Effect of acarbose on insulin sensitivity in elderly patients with diabetes. Diabetes Care 23: 1162–1167 (2000)

    CAS  Article  Google Scholar 

  30. Lebovitz HE. α-Glucosidase inhibitors as agents in the treatment of diabetes. Diabetes Rev. 6: 132–145 (1998)

    Google Scholar 

  31. Dolan PL, Tapscott EB, Peterson RG, Dohm GL. Effects of feeding acarbose on muscle glucose transport and GLUT4 protein in lean and obese diabetic (ZDF/Gmi-fa) rats. J. Nutr. Biochem. 8: 322–327 (1997)

    CAS  Article  Google Scholar 

  32. Park CH, Yamabe N, Noh JS, Kang KS, Tanaka T, Yokozawa T. The beneficial effects of morroniside on the inflammatory response and lipid metabolism in the liver of db/db mice. Biol. Pharm. Bull. 32: 1734–1740 (2009)

    CAS  Article  Google Scholar 

  33. Singh AB, Akanksha, Singh N, Maurya R, Srivastava AK. Antihyperglycaemic, lipid lowering, and anti-oxidant properties of [6]-gingerol in db/db mice. Int. J. Med. Med. Sci. 1: 536–544 (2009)

    CAS  Google Scholar 

  34. Witztum JL, Steinberg D. The oxidative modification hypothesis of atherosclerosis: Does it hold for humans? Trends Cardiovasc. Med. 11: 93–102 (2001)

    CAS  Article  Google Scholar 

  35. Du X, Edelstein D, Obici S, Higham N, Zou MH, Brownlee M. Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. J. Clin. Invest. 116: 1071–1080 (2006)

    CAS  Article  Google Scholar 

  36. Harman D. The aging process: Major risk factor for disease and death. P. Natl. Acad. Sci. USA 88: 5360–5363 (1991)

    CAS  Article  Google Scholar 

  37. Dröge W. Free radicals in the physiological control of cell function. Physiol. Rev. 82: 47–95 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-In Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jang, YH., Kang, MJ., Choe, EO. et al. Mung bean coat ameliorates hyperglycemia and the antioxidant status in type 2 diabetic db/db mice. Food Sci Biotechnol 23, 247–252 (2014). https://doi.org/10.1007/s10068-014-0034-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0034-3

Keywords

  • mung bean
  • glucose
  • α-glucosidase
  • antioxidant
  • diabetes