Skip to main content
Log in

The prebiotic lactosucrose modulates gut metabolites and microbiota in intestinal inflammatory rats

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of lactosucrose on the short chain fatty acid (SCFA) content, the intestinal flora, the acidity, and the amino nitrogen (NH3-N) content of the intestine in inflammatory bowel disease (IBD) rats was investigated. Dietary lactosucose supplementation increased amounts of beneficial bacteria and diminished amounts of pathogenic bacteria. Lactosucrose decreased the NH3-N content in cecal and colonic digesta, compared to inflammatory rats. Lactosucrose increased the acidity in the intestinal lumen, and the acetic acid, propionic acid, and butyric acid contents in cecal and colonic digesta, compared to inflammatory rats. The butyrate content in the lactosucrose group was higher than for the inflammatory, sulfasalazine, and normal groups. Lactosucrose promoted beneficial intestinal health and prevented intestinal inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Keefe SJ. Nutrition and colonic health: The critical role of the microbiota. Curr. Opin. Gastroent. 1: 51–58 (2008)

    Article  Google Scholar 

  2. Hotamisligil GS. Inflammation and metabolic disorders. Nature 444: 860–867 (2006)

    Article  CAS  Google Scholar 

  3. Paresh D, Ahmad A, Arindam B. Inflammation: The link between insulin resistance, obesity and diabetes. Trends Immunol. 1: 4–7 (2004)

    Google Scholar 

  4. Lopez GE, Schulze MB, Meigs JB, Manson JE, Rifai N, Stampfer MJ, Willett WC, Hu FB. Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction. J. Nutr. 3: 562–566 (2005)

    Google Scholar 

  5. Sturm A, Dignass AU. Epithelial restitution and wound healing in inflammatory bowel disease. World J. Gastroentero. 3: 348–353 (2008)

    Article  Google Scholar 

  6. Jana C, Giada DP, Renata S, Olga K, Miloslav K, Yolanda S, Ludmila T. Role of intestinal bacteria in gliadin-induced changes in intestinal mucosa: Study in germ-free rats. PLoS One 1: e16169 (2011)

    Google Scholar 

  7. Hernot DC, Boileau TW, Bauer LL, Middelbos IS, Murphy MR, Swanson KS, Fahey GC. In vitro fermentation profiles, gas production rates, and microbiota modulation as affected by certain fructans, galactooligosaccharides, and polydextrose. J. Agr. Food Chem. 57: 1354–1361 (2009)

    Article  CAS  Google Scholar 

  8. Teramoto F, Rokutan K, Kawakami Y, Fujimura Y, Uchidac J, Oku K, Oka M, Yoneyama M. Effect of 4G-β-d-galactosylsucrose (lactosucrose) on fecal microflora in patients with chronic inflammatory bowel disease. J. Gastroenterology 1: 33–39 (1996)

    Article  Google Scholar 

  9. Liao CL, Yin YL, Ruan Z, Wen HY. Process optimization for beta-fructofuranoside-catalyzed synthesis of lactosucrose. Food Sci. 4: 102–106 (in Chinese) (2011)

    Google Scholar 

  10. Lee IA, Young JP, Yeo HK, Myung JH, Dong HK. Soyasaponin I attenuates TNBS-induced colitis in mice by inhibiting NF-κB pathway. J. Agr. Food Chem. 20: 10929–10934 (2010)

    Article  Google Scholar 

  11. Zhou XL, Yin YL, Ruan Z. Fermentation characteristics of soybean oligosaccharides in vitro. Food Sci. 3: 98–102 (in Chinese) (2011)

    Google Scholar 

  12. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−Ct method. Methods 25: 402–408 (2001)

    Article  CAS  Google Scholar 

  13. Hoentjen F, Welling GW, Harmsen HJ, Zhang XY, Snart J, Tannock GW. Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated with microflora changes and immunomodulation. Inflamm. Bowel Dis. 11: 977–985 (2005)

    Article  Google Scholar 

  14. Griffiths EA, Duffy LC, Schanbacher FL, Qiao HP, Dryja D, Leavens A, Rossman J, Rich G, Dirienzo D, Ogra PL. In vivo effects of bifidobacteria and lactoferrin on gut endotoxinconcentration and mucosal immunity in Balb/c mice. Dig. Dis. Sci. 49: 579–589 (2004)

    Article  CAS  Google Scholar 

  15. Wang ZT, Xiao GX, Yao YM, Guo S, Lu K, Sheng ZY. The role of bifidobacteria in gut barrier function after thermal injury in rats. J. Traum. 61: 650–657 (2006)

    Article  Google Scholar 

  16. Spring P, Wenk C, Dawson KA, Newman KE. The effects of dietary mannanoligosaccharide on cecal perameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poultry Sci. 79: 205–211 (2000)

    Article  CAS  Google Scholar 

  17. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 6: 1401–1412 (1995)

    Google Scholar 

  18. Chung YC, Hsu CK, Ko CY, Chan YC. Dietary intake of xylooligosaccharides improves the intestinal microbiota, fecal moisture, and pH value in the elderly. Nutr. Res. 12: 756–761 (2007)

    Article  Google Scholar 

  19. Cummings JH. Short-chain fatty acid enemas in the treatment of distal ulcerative colitis. Eur. J. Gastroenterol. Hepatol. 9: 149–153 (1997)

    Article  CAS  Google Scholar 

  20. Cotter PD, Hill C. Surviving the acid test: responses of Gram-positive bacteria to low pH. Microbiol. Mol. Biol. 3: 429–453 (2003)

    Article  Google Scholar 

  21. Topping DL, Fukushima M, Bird AR. Resistant starch as a prebiotic and synbiotic: State of the art. P. Nutr. Soc. 1: 171–176 (2003)

    Article  Google Scholar 

  22. Williams EA, Coxhead JM, Mathers JC. Anti-cancer effects of butyrate: use of microarray technology to investigate mechanisms. P. Nutr. Soc. 1: 107–115 (2003)

    Article  Google Scholar 

  23. Cao YN, Gao XX, Zhang WL, Zhang GH, Nguyen AK, Liu XH, Jimenez F, Cox CS, Townsend CM, Ko TC. Dietary fiber enhances TGF-beta signaling and growth inhibition in the gut. Am. J. Physiol-Gastr. L. 301: G156–G164 (2011)

    CAS  Google Scholar 

  24. Vieira EL, Leonel AJ, Sad AP, Beltrão NR, Costa TF, Ferreira TM, Gomes-Santos AC, Faria AM, Peluzio MC, Cara DC, Alvarez-Leite J. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. J. Nutr. Biochem. 5: 430–436 (2012)

    Article  Google Scholar 

  25. Vinolo MA, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC, Curi R. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J. Nutr. Biochem. 22: 849–855 (2011)

    Article  CAS  Google Scholar 

  26. Thibault R, Blachier F, Darcy-Vrillon B, Coppet PD, Bourreille A, Segain J. Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: A transport deficiency. Inflamm. Bowel. Dis. 4: 684–695 (2010)

    Article  Google Scholar 

  27. Leu RK, Brown IL, Hu Y, Morita T, Esterman A. Effect of dietary resistant starch and protein on colonic fermentation and intestinal tumourigenesis in rats. Carcinogenesis 2: 240–245 (2007)

    Google Scholar 

  28. Preter VD, Hamer HM, Windey K, Verbeke K. The impact of pre-and/or probiotics on human colonic metabolism: Does it affect human health? Mol. Nutr. Food Res. 1: 46–57 (2011)

    Article  Google Scholar 

  29. Jonathan MC, van den Borne JG, Wiechen P, Schols HA, Gruppen H. In vitro fermentation of 12 dietary fibres by faecal inoculum from pigs and humans. J. Food Chem. 3: 889–897 (2012)

    Article  Google Scholar 

  30. Shen Q, Zhao L, Tuohy KM. High-level dietary fibre up-regulates colonic fermentation and relative abundance of saccharolytic bacteria within the human faecal microbiota in vitro. Eur. J. Nutr. 6: 693–705 (2012)

    Article  Google Scholar 

  31. Reimer RA, Pelletier X, Carabin IG, Lyon MR, Gahler RJ, Wood S. Faecal short chain fatty acids in healthy subjects participating in a randomised controlled trial examining a soluble highly viscous polysaccharide versus control. J. Hum. Nutr. Diet. 4: 373–377 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Ruan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Ruan, Z., Huang, X. et al. The prebiotic lactosucrose modulates gut metabolites and microbiota in intestinal inflammatory rats. Food Sci Biotechnol 23, 157–163 (2014). https://doi.org/10.1007/s10068-014-0021-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0021-8

Keywords

Navigation