Skip to main content
Log in

Antimutagenicity activity of the putative probiotic strain Lactobacillus paracasei subsp. tolerans JG22 isolated from pepper leaves Jangajji

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the probiotic nature, antimutagenicity, and mutagen-binding ability of the bacterial strain JG22 isolated from pepper-leaf jangajji. The strain, which was identified as Lactobacillus paracasei subsp. tolerans JG22, retained a high survival rate when exposed to pepsin-containing gastric juice and intestinal fluid supplemented with oxgall. This strain adhered to Caco-2 cells and exhibited resistance to ciprofloxacin, rifampicin, erythromycin, and cephalothin. Furthermore, against the 3 mutagens tested, live cells of strain JG22 displayed the greatest antimutagenicity against 2-nitroflourene (2-NF), with 51.37% inhibition, but exhibited relatively low antimutagenicity (11.07%) against 4-nitroquinoline-1-oxide (4-NQO). The antimutagenic effect of this strain was somewhat reduced after heat treatment for 30 min at 80°C. The most efficient mutagen-binding was observed with live cells of strain JG22, which bound 69.5% of the 2-NF. Thus, the putative probiotic strain JG22 could play a vital role in reducing the risk of cancer by absorbing mutagens and suppressing mutagenesis. Therefore, we consider the strain a good candidate for functional cultures and food system development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shuker DE. The enemy at the gates? DNA adducts as biomarkers of exposure to exogenous and endogenous genotoxic agents. Toxicol. Lett. 134: 51–56 (2002)

    Article  CAS  Google Scholar 

  2. Burns AJ, Rowland IR. Antigenotoxicity of probiotics and prebiotics on faecal water-induced DNA damage in human colon adenocarcinoma cells. Mutat. Res. 551: 233–243 (2004)

    Article  CAS  Google Scholar 

  3. Pool-Zobel BL, Neudeker C, Domizlaff I, Ji S, Schillinger U, Rumney C, Moretti M, Villarini M, Scassellati-Sforzolini G, Rowland I. Lactobacillus- and Bifidobacterium-mediated antigenotoxicity in the colon of rats. Nutr. Cancer 26: 365–380 (1996)

    Article  CAS  Google Scholar 

  4. Vorobieva LI, Khodjaev EY, Cherdinceva TA. The study of induced antimutagenesis of propionic acid bacteria. J. Microbiol. Methods 24: 249–258 (1996)

    Article  Google Scholar 

  5. Park KY, Kim SH, Son TJ. Antimutagenic activities of cell wall and cytosol fractions of lactic acid bacteria isolated from kimchi. J. Food Sci. Nutr. 3: 329–333 (1998)

    Google Scholar 

  6. Lankaputhra WEV, Shah NP. Antimutagenic properties of probiotic bacteria and of organic acids. Mutat. Res. 39: 169–182 (1998)

    Article  Google Scholar 

  7. Waters MD, Stack HF, Jackson MA, Brockman HE, de Flora S. Activity profiles of antimutagens: In vitro and in vivo data. Mutat. Res. 350: 109–129 (1996)

    Article  Google Scholar 

  8. Hosono A. Functional of lactic acid bacteria for the health. Bull. Dairy Tech. Assoc. 50: 92–116 (2000)

    Google Scholar 

  9. Saarela M, Mogensen G, Fonden R, Matto J, Mattila-Sandholm T. Probitoic bacteria: Safety, functional and technological properties. J. Biotechnol. 84: 197–215 (2000)

    Article  CAS  Google Scholar 

  10. Maragkoudakis PA, Zoumpopoulou G, Christos M, Kalantzopoulos G, Pot B, Tsakalidou E. Probiotic potential of Lactobacillus strains isolated from dairy products. Int. Dairy J. 16: 189–199 (2006)

    Article  CAS  Google Scholar 

  11. Tanaka H, Hashiba H, Kok J, Mierau I. Bile salt hydrolase of Bifidobacterium longum-biochemical and genetic characterization. Appl. Environ. Microbiol. 66: 2502–2512 (2000)

    Article  CAS  Google Scholar 

  12. Tuomola EM, Salminen SJ. Adhesion of some probiotic and diary Lactobacillus strains to Caco-2 cell cultures. Int. J. Food Microbiol. 41: 45–51 (1998)

    Article  CAS  Google Scholar 

  13. Maron DM, Ames BN. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 113: 173–215 (1983)

    Article  CAS  Google Scholar 

  14. Srinivasan P, Sabitha KE, Shyamaladevi CS. Attenuation of 4-nitroquinoline 1-oxide induced in vitro lipid peroxidation by green tea polyphenols. Life Sci. 80: 1080–1086 (2007)

    Article  CAS  Google Scholar 

  15. Bourdichon F, Casaregola S, Farrokh C, Frisvad JC, Gerds ML, Hammes WP, Harnett J, Huys G, Laulund S, Ouwehand A, Powell IB, Prajapati JB, Seto Y, Schure ET, Boven AV, Vankerckhoven V, Zgoda A, Tuijtelaars S, Hansen EB. Food fermentations: Microorganisms with technological beneficial use. Int. J. Food Microbiol. 154: 87–97 (2012)

    Article  CAS  Google Scholar 

  16. Peres CM, Peres C, Hernandez-Mendoza A, Malcata FX. Review on fermented plant materials as carriers and sources of potentially probiotic lactic acid bacteria-With an emphasis on table olives. Trends Food Sci. 26: 31–42 (2012)

    Article  CAS  Google Scholar 

  17. Lim SM. Bile salts degreadation and cholesterol assimilation ability of Pediococcus pentosaceus MLK67 isolated from mustard leaf kimchi. Korean J. Microbiol. 47: 231–240 (2011)

    Google Scholar 

  18. Lim SM, Ahn DH. Factors affecting adhesion of lactic acid bacteria to Caco-2 cells and inhibitory effect on infection of Salmonella Typhimurium. J. Microbiol. Biotechnol. 22: 1731–1739 (2012)

    Article  CAS  Google Scholar 

  19. Merrell DS, Camilli A. Acid tolerance of gastrointestinal pathogens. Curr. Opin. Microbiol. 5: 51–55 (2002)

    Article  CAS  Google Scholar 

  20. Cotter PD, Hill C. Surviving the acid test: Responses of Gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67: 429–453 (2003)

    Article  CAS  Google Scholar 

  21. De Smet I, Van Hoorde L, Vande Woestyne M, Cristiances H, Verstraete W. Significance of bile salt hydrolytic activities of lactobacilli. J. Appl. Bacteriol. 79: 292–301 (1995)

    Article  Google Scholar 

  22. Burns P, Vinderola G, Binetti A, Quiberoni A, de Los Reyes-Gavilan CG, Reinheimer J. Bile-resistant derivatives obtained from non-intestinal dairy lactobacilli. Int. Dairy J. 18: 377–385 (2008)

    Article  CAS  Google Scholar 

  23. Corzo G, Gilliland SE. Measurement of bile salt hydrolase activity from Lactobacillus acidophilus based on disappearance of conjugated of bile salts. J. Dairy Sci. 82: 466–471 (1999)

    Article  CAS  Google Scholar 

  24. Moser SA, Savage DC. Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in Lactobacilli. Appl. Environ. Microbiol. 67: 3476–3480 (2001)

    Article  CAS  Google Scholar 

  25. Vidhyasagar V, Jeevaratnam K. Evaluation of Pediococcus pentosaceus strains isolated from idly batter for probiotic properties in vitro. J. Funct. Foods 5: 235–243 (2013)

    Article  CAS  Google Scholar 

  26. Granato D, Perotti F, Masserey I, Rouvet M, Golliard M, Servin A, Brassart D. Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl. Environ. Microbiol. 65: 1071–1077 (1999)

    CAS  Google Scholar 

  27. Kirtzalidou E, Pramateftaki P, Kotsou M, Kyriacou A. Screening for Lactobacilli with probiotic properties in the infant gut microbiota. Clin. Microbiol. 17: 440–433 (2011)

    CAS  Google Scholar 

  28. Wright, GD. Bacterial resistance to antibiotics: Enzymatic degradation and modification. Adv. Drug Delivery Rev. 57: 1451–1470 (2005)

    Article  CAS  Google Scholar 

  29. Nadathur SR, Gould SJ, Baklynski AT. Antimutagenicity of fermented milk. J. Dairy Sci. 77: 3287–3295 (1994)

    Article  CAS  Google Scholar 

  30. Cassand P, Abdelli H, Bouley C, Denariaz G, Narbonne JF. Inhibitory effect of dairy products on the mutagenicities of chemicals and dietary mutagens. J. Dairy Res. 61: 545–552 (1994)

    Article  CAS  Google Scholar 

  31. Zhang XB, Ohta Y. Binding of mutagens by fractions of the cell wall skeleton of lactic acid bacteria on mutagens. J. Dairy Sci. 74: 1477–1481 (1991)

    Article  CAS  Google Scholar 

  32. Sreekumar O, Hosono A. The antimutagenic properties of a polysaccharide produced by Bifidobacterium longum and its cultured milk against some heterocyclic amines. Can. J. Microbiol. 44: 1029–1036 (1998)

    Article  CAS  Google Scholar 

  33. Sreekumar O, Hosono A. Antimutagenicity and influence of physical factors in binding Lactobacillus gasseri and Bifidobacterium longum cells to amino acid pyrolysates. J. Dairy Sci. 81: 1508–1516 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Mee Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, SM. Antimutagenicity activity of the putative probiotic strain Lactobacillus paracasei subsp. tolerans JG22 isolated from pepper leaves Jangajji. Food Sci Biotechnol 23, 141–150 (2014). https://doi.org/10.1007/s10068-014-0019-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0019-2

Keywords

Navigation