Skip to main content
Log in

Anti-diabetic and hypolipidemic effects of purple-fleshed potato in streptozotocin-induced diabetic rats

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the effects of purple-fleshed potatoes on blood glucose level (BGL), insulin and lipid levels in streptozotocin (STZ) induced diabetic rats for 7 weeks. Test groups were divided into non-diabetic control and diabetic groups. The diabetic groups were further divided into three groups: diabetes mellitus (DM) control, 10% purple-fleshed potato DM (10PP-DM), and 20% purple-fleshed potato DM (20PPDM) groups. Three weeks after initiating the experimental diet, BGL was significantly lower in the 10PP-DM and 20PP-DM groups compared to the DM control group. As for serum insulin levels, the 20PP-DM group was significantly higher than in the DM control group. While serum cholesterol level was significantly lower in the 20PP-DM group, serum triglyceride level was significantly lower in the 10PP-DM group than in the DM control group. We concluded that a 20PP powder intake improves both diabetes and lipid control in diabetic rats by significantly improving serum insulin level and lowering BGL and serum cholesterol level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park YE, Cho JH, Cho HM, Yi JY, Seo HW, Chung MG. A new potato cultivar “Hongyoung”, with red skin and flesh color, and high concentrations of anthocyanins. Korean J. Breed Sci. 41: 502–506 (2009)

    Google Scholar 

  2. Rural Development Administration. Food composition tables. Rural Development Administration, Korea 7: 66–68 (2006)

    Google Scholar 

  3. Brown CR. Antioxidants in potato. Am. J. Potato Res. 82: 163–172 (2005)

    Article  CAS  Google Scholar 

  4. Prior RL. Fruit and vegetables in the prevention of cellular oxidative damage. Am. J. Clin. Nutr. 78: 570S–578S (2003)

    CAS  Google Scholar 

  5. Tsuda T, Horio F, Osawa T. The role of anthocyanins as an antioxidant under oxidative stress in rats. Biofactors 13: 133–139 (2000)

    Article  CAS  Google Scholar 

  6. Kähkönen MP, Heinonen M. Antioxidant activity of anthocyanins and their aglycons. J. Agr. Food Chem. 51: 628–633 (2003)

    Article  Google Scholar 

  7. Matsui T, Ueda T, Oki T, Sugita K, Terahara N, Matsumoto K. α-Glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity. J. Agr. Food Chem. 49: 1948–1951 (2001)

    Article  CAS  Google Scholar 

  8. Matsui T, Ueda T, Oki T, Sugita K, Terahara N, Matsumoto K. α-Glucosidase inhibitory action of natural acylated anthocyanins. 2. α-Glucosidase inhibition by isolated anthocyanins. J. Agr. Food Chem. 49: 1952–1956 (2001)

    Article  CAS  Google Scholar 

  9. Ramirez-Tortosa C, Andersen O, Gardner P. Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin depleted rats. Free Radic. Biol. Med. 31: 1033–1037 (2001)

    Article  CAS  Google Scholar 

  10. Acquaviva R, Russo A, Galvano F. Cyanidin and cyaniding 3-Obeta-d-glucoside as DNA cleavage protectors and antioxidants. Cell Biol. Toxicol. 19: 243–252 (2003)

    Article  CAS  Google Scholar 

  11. Lazze M, Pizzala R, Savio M, Stivala L, Prosperi E, Bianchi L. Anthocyanins protect against DNA damage induced by tert-butylhydroperoxide in rat smooth muscle and hepatoma cells. Mutat. Res. 53: 103–115 (2003)

    Google Scholar 

  12. Rossi A, Serraino I, Dugo P. Protective effects of anthocyanins from blackberry in a rat model of acute lung inflammation. Free Radic. Res. 37: 891–900 (2003)

    Article  CAS  Google Scholar 

  13. Lefevre M, Howard L, Most M, Ju Z, Delany J. Microarray analysis of the effects of grape anthocyanins on hepatic gene expression in mice. FASEB J. 18: 851 (2004)

    Google Scholar 

  14. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 27: 1047–1053 (2004)

    Article  Google Scholar 

  15. Higdon JV, Frei B. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr. 43: 89–143 (2003)

    Article  CAS  Google Scholar 

  16. Zhang Y, Cai J, Ruan H, Pi H, Wu J. Antihyperglycemic activity of kinsenoside, a high yielding constituent from Anoectochilus roxburghii in streptozotocin diabetic rats. J. Ethnopharmacol. 114: 141–145 (2007)

    Article  CAS  Google Scholar 

  17. Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123: 1939–1951 (1993)

    CAS  Google Scholar 

  18. Kesavulu MM, Rao BK, Giri R, Vijaya J, Subramanyam G, Apparao C. Lipid peroxidation and antioxidant enzyme atatus in type 2 diabetes with coronary heart. Diabetes Res. Clin. Pr. 53: 33–39 (2001)

    Article  CAS  Google Scholar 

  19. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 40: 405–411 (1991)

    Article  CAS  Google Scholar 

  20. Ceriello A. New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care 26: 1589–1596 (2003)

    Article  CAS  Google Scholar 

  21. Crespy V, Williamson G. A review of the health effects of green tea catechins in vivo animal models. J. Nutr. 134: 3431S–3440S (2004)

    CAS  Google Scholar 

  22. Hyon SH, Kim DH. Long-term preservation of rat pancreatic islets under physiological conditions. J. Biotechnol. 85: 241–246 (2001)

    Article  CAS  Google Scholar 

  23. Frei B, Higdon JV. Antioxidant activity of tea polyphenols in vivo: Evidence from animal studies. J. Nutr. 133: 3275S–3284S (2003)

    CAS  Google Scholar 

  24. Matsui T, Ebuchi S, Kobayashi M, Fukui K, Sugita K, Terahara N, Matsumoto K. Anti-hyperglycemic effect of diacylated anthocyanin derived from Ipomoea batatas cultivar ayamurasaki can be achieved through the α-glucosidase inhibitory action. J. Agr. Food Chem. 50: 7244–7248 (2002)

    Article  CAS  Google Scholar 

  25. Burton-Freeman B, Linares A, Hyson D, Kappagoda T. Strawberry modulates LDL oxidation and postprandial lipemia in response to high-fat meal in overweight hyperlipidemic men and women. J. Am. Coll. Nutr. 29: 46–54 (2010).

    Article  CAS  Google Scholar 

  26. Burton-Freeman B. Postprandial metabolic events and fruit-derived phenolics: A review of the science. Brit. J. Nutr. 104: S1–S14 (2010).

    Article  CAS  Google Scholar 

  27. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: The role of antioxidant stress. Circ. Res. 87: 840–844 (2000)

    Article  CAS  Google Scholar 

  28. DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Med. Clin. N. Am. 88: 787–835 (2004)

    Article  CAS  Google Scholar 

  29. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813–820 (2001)

    Article  CAS  Google Scholar 

  30. Han KH, Matsumoto A, Shimada K, Sekikawa M, Fukushima M. Effects of anthocyanin-rich purple potato flakes on antioxidant status in F344 rats fed a cholesterol-rich diet. Brit. J. Nutr. 98: 914–921 (2007)

    Article  CAS  Google Scholar 

  31. Chen CC, Liu LK, Hsu JD, Huang HP, Yang MY, Wang HJ. Mulberry extract inhibits the development of atherosclerosis in holesterol-fed rabbits. Food Chem. 91: 601–607 (2005)

    Article  CAS  Google Scholar 

  32. Du Q, Zheng J, Xu Y. Composition of anthocyanins in mulberry and their antioxidant activity. J. Food Compos. Anal. 21: 390–395 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi-Kyeong Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, MK., Park, SJ., Eom, S.H. et al. Anti-diabetic and hypolipidemic effects of purple-fleshed potato in streptozotocin-induced diabetic rats. Food Sci Biotechnol 22, 1–6 (2013). https://doi.org/10.1007/s10068-013-0231-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0231-5

Keywords

Navigation