Probiotic Bacillus subtilis KU201 having antifungal and antimicrobial properties isolated from kimchi


Bacillus subtilis KU201 was isolated from kimchi and characterized for probiotic use. B. subtilis KU201 was stable in artificial gastric condition, and adhered strongly against intestinal cell. B. subtilis KU201 was not produce a carcinogenic enzyme. B. subtilis KU201 showed a broad-spectrum antimicrobial effect. Bacteriocin KU201 was sensitive against protease XIV, proteinase K, and α-chymotrypsin, stable over a pH range of 3 to 9 for 4 h, and withstood exposure to temperatures of 50–90°C for 30 min. The molecular weight of bacteriocin KU201 was 3.5 kDa. The bactericidal effect of bacteriocin KU201 was observed by morphological changes in cell membrane. These results show that B. subtilis KU201 may be used as a potential probiotic strain, also bacteriocin KU201 can be used as a natural food preservative.

This is a preview of subscription content, access via your institution.


  1. 1.

    Fuller R. Probiotics in human and animals. J. Appl. Microbiol. 66: 365–378 (1989)

    Article  CAS  Google Scholar 

  2. 2.

    Ricke SC, Kundinger MM, Miller DR, Keeton JT. Alternatives to antibiotics: Chemical and physical antimicrobial interventions and foodborne pathogen response. Poultry Sci. 84: 667–675 (2005)

    CAS  Google Scholar 

  3. 3.

    Raymond J. World’s healthiest foods: Kimchi (Korea). Available from: Accessed Feb. 1, 2008.

  4. 4.

    Jun HK, Bae KM, Kim YH, Baik HS. Production and characterization of cyclodextrin glucanotransferase from Bacillus sp. JK-43 isolated from Kimchi. J. Korean Soc. Food Sci. Nutr. 29: 41–48 (2000)

    CAS  Google Scholar 

  5. 5.

    Lee MS, Lee NK, Chang KH, Choi SY, Song CK, Paik HD. Isolation and characterization of a protease-producing bacterium, Bacillus amyloliquefaciens P27 from Meju as a probiotic starter for fermented meat products. Korean J. Food Sci. Ani. Resour. 30: 804–810 (2010)

    Article  Google Scholar 

  6. 6.

    Cleveland J, Montville TJ, Nes IF, Chikindas ML. Bacteriocins: Safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71: 1–20 (2001)

    Article  CAS  Google Scholar 

  7. 7.

    Cole CB, Fuller R, Carter SM. Effect of probiotic supplements of Lactobacillus acidophilus and Bifidobacterium adolescentis 2204 on β-glucosidase and β-glucuronidase activity in the lower gut of rats associated with a human fecal flora. Microb. Ecol. Health Dis. 2: 223–225 (1989)

    Article  Google Scholar 

  8. 8.

    Lee NK, Park JS, Park E, Paik HD. Adherence and anticarcinogenic effects of Bacillus polyfermenticus SCD in the large intestine. Lett. Appl. Microbiol. 44: 274–278 (2007)

    Article  Google Scholar 

  9. 9.

    Monteagudo-Mera A, Rodríguez-Aparicio L, Rúa J, Martínez-Blanco H, Navasa N, García-Armestor MR, Ferroro MA. In vitro evaluation of physiological probiotic properties of different lactic acid bacteria strains of dairy and human origin. J. Funct. Food 4: 531–541 (2012)

    Article  CAS  Google Scholar 

  10. 10.

    Kent RM, Guinane CM, O’Connor PM, Fitzgerald GF, Hill C, Santon C, Ross RP. Production of the antimicrobial peptides Caseicin A and B by Bacillus isolates growing on sodium caseinate. Lett. Appl. Microbiol. 55: 141–148 (2012)

    Article  CAS  Google Scholar 

  11. 11.

    Yeo IC, Lee NK, Cha CJ, Hahm YT. Narrow antagonistic activity of antimicrobial peptide from Bacillus subtilis SCK-2 against Bacillus cereus. J. Biosci. Bioeng. 112: 338–344 (2011)

    Article  CAS  Google Scholar 

  12. 12.

    Moshafi MH, Forooranfar H, Ameri A, Shakibaie M, Dehghannoudeh G, Razavi M. Antimicrobial activity of Bacillus sp. strain FAS1 isolated from soil. Pak. J. Pharm. Sci. 24: 269–275 (2011)

    CAS  Google Scholar 

  13. 13.

    Shan B, Cai Y, Brooks JD, Corke H. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int. J. Food Microbiol. 117: 112–119 (2007)

    Article  CAS  Google Scholar 

  14. 14.

    Hwang BM, Lee JY, Lee DG. Antimicrobial peptides derived from the marine organism(s) and its mode of action. Korean J. Microbiol. Biotechnol. 1: 19–23 (2010)

    Google Scholar 

  15. 15.

    Yang EJ, Chang HC. Characterization of bacteriocin-like substances produced by Bacillus subtilis MJP1. Korean J. Microbiol. Biotechnol. 35: 339–346 (2007)

    CAS  Google Scholar 

  16. 16.

    Lee KH, Jun KD, Kim WS, Paik HD. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Lett. Appl. Microbiol. 32: 146–151 (2001)

    Article  CAS  Google Scholar 

  17. 17.

    Kanmoun F, Mejdoub H, Aouissaoui H, Reinbolt J, Hammami A, Jaoua S. Purification, amino acid sequence and characterization of bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J. Appl. Microbiol. 98: 881–888 (2005)

    Article  Google Scholar 

  18. 18.

    Gray EJ, Lee KD, Souleimanov AM, Di Falco MR, Zhou X, Ly A, Charles TC, Driscoll BT, Smith DL. A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB 17: Isolation and classification. J. Appl. Microbiol. 100: 545–554 (2006)

    Article  CAS  Google Scholar 

  19. 19.

    Hyronimus B, Le Marrec C, Urdaci MC. Coagulin, a bacteriocinlike inhibitory substance produced by Bacillus coagulans 14. J. Appl. Microbiol. 85: 42–50 (1998)

    Article  CAS  Google Scholar 

  20. 20.

    Kemper MA, Urrotia MM, Beveridge TJ, Koch AL, Doyle RJ. Proton motive force may regulate cell wall-associated enzymes of Bacillus subtilis. J. Bacteriol. 175: 5690–5696 (1993)

    CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hyun-Dong Paik.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, NK., Kim, SY., Choi, SY. et al. Probiotic Bacillus subtilis KU201 having antifungal and antimicrobial properties isolated from kimchi. Food Sci Biotechnol 22, 1–5 (2013).

Download citation


  • kimchi
  • Bacillus subtilis
  • probiotic
  • bacteriocin