Skip to main content
Log in

Marine-derived bioactive materials for neuroprotection

  • Research Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The marine environment is a rich source of materials with significant biological activities. Isolation and investigation of bioactive materials from marine organisms is a topic of current research interest in the food industry. Among marine-derived bioactive materials, peptides, chitosan, sulfated polysaccharides, phlorotannins, and natural pigments are potential neuroprotective agents. This review elaborates on the neuroprotective mechanisms of marine-derived bioactive materials and emphasizes prospects for use in neuroprotection as part of nutraceuticals and functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bjarkam CR, Sørensen JC, Sunde NÅ, Geneser FA, Østergaard K. New strategies for the treatment of Parkinson’s disease hold considerable promise for the future management of neurodegenerative disorders. Biogerontology 2: 193–207 (2001)

    Article  CAS  Google Scholar 

  2. Ansari J, Siraj A, Inamdar N. Pharmacotherapeutic Approaches of Parkinson’s Disease. Int. J. Pharmacol. 6: 584–590 (2010)

    Article  CAS  Google Scholar 

  3. Kannappan R, Gupta S, Kim J, Reuter S, Aggarwal B. Neuroprotection by Spice-Derived Nutraceuticals: You Are What You Eat! Mol. Neurobiol. 44: 142–159 (2011)

    Article  CAS  Google Scholar 

  4. Narang S, Gibson D, Wasan AD, Ross EL, Michna E, Nedeljkovic SS, Jamison RN. Efficacy of dronabinol as an adjuvant treatment for chronic pain patients on opioid therapy. J. Pain 9: 254–264 (2008)

    Article  CAS  Google Scholar 

  5. Ho C, Simon JE, Shahidi F, Shao Y. Dietary Supplements. ACS Symposium Series. Vol. 987. ACS Publications, Washington, DC, USA (2008)

    Book  Google Scholar 

  6. Alasavar C, Shahidi F, Miyashita K, Wanasundara U. Handbook of Seafood Quality, Safety, and Health Applications. Wiley, New Delhi, India (2011)

    Google Scholar 

  7. Shahidi F, Janak Kamil Y. Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends Food Sci. Technol. 12: 435–464 (2001)

    Article  Google Scholar 

  8. Kim S, Wijesekara I. Development and biological activities of marine-derived bioactive peptides: A review. J. Func. Foods 2: 1–9 (2010)

    Article  CAS  Google Scholar 

  9. Swing J. What Future for the Oceans? Foreign Affairs 82: 139–152 (2003)

    Article  Google Scholar 

  10. Iriti M, Vitalini S, Fico G, Faoro F. Neuroprotective herbs and foods from different traditional medicines and diets. Molecules 15: 3517–3555 (2010)

    Article  CAS  Google Scholar 

  11. Mishra S, Palanivelu K. The effect of curcumin (turmeric) on Alzheimer’s disease: An overview. Ann. Indian Acad. Neurol. 11: 13–19 (2008)

    Article  Google Scholar 

  12. Jorm AF, Jolley D. The incidence of dementia: A meta-analysis. Neurology 51:728–733 (1998)

    Article  CAS  Google Scholar 

  13. Pangestuti R, Kim S.K. Neuroprotective Properties of Chitosan and Its Derivatives. Marine Drugs 8: 2117–2128 (2010)

    Article  CAS  Google Scholar 

  14. Ehrenreich H, Sirén AL. Neuroprotection -what does it mean?-what means do we have? Eur. Arch. Psychiatry Clin. Neurosci. 251: 149–151 (2001)

    Article  CAS  Google Scholar 

  15. Behl C, Moosmann B. Antioxidant neuroprotection in Alzheimer’s disease as preventive and therapeutic approach. Free Radic. Biol. Med. 33: 182–191 (2002)

    Article  CAS  Google Scholar 

  16. Gao HM, Liu B, Zhang W, Hong JS. Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol. Sci. 24: 395–401 (2003)

    Article  CAS  Google Scholar 

  17. Eftekharzadeh B, Khodagholi F, Abdi A, Maghsoudi N. Alginate protects NT2 neurons against H2O2-induced neurotoxicity. Carbohydr. Polym. 79: 1063–1072 (2010)

    Article  CAS  Google Scholar 

  18. Luo D, Zhang Q, Wang H, Cui Y, Sun Z, Yang J, Zheng Y, Jia J, Yu F, Wang X. Fucoidan protects against dopaminergic neuron death in vivo and in vitro. Eur. J. Pharmacol. 617: 33–40 (2009)

    Article  CAS  Google Scholar 

  19. Kietzmann T, Knabe W, Schmidt-Kastner R. Hypoxia and hypoxiainducible factor modulated gene expression in brain: Involvement in neuroprotection and cell death. Eur. Arch. Psychiatry Clin. Neurosci. 251: 170–178 (2001)

    Article  CAS  Google Scholar 

  20. Schwartz G, Fehlings MG. Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: Improved behavioral and neuroanatomical recovery with riluzole. J. Neurosurg. Spine 94: 245–256 (2001)

    Article  CAS  Google Scholar 

  21. Woo MS, Park JS, Choi IY, Kim WK, Kim HS. Inhibition of MMP 3 or 9 suppresses lipopolysaccharide induced expression of proinflammatory cytokines and iNOS in microglia. J. Neurochem. 106: 770–780 (2008)

    Article  CAS  Google Scholar 

  22. Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 3: 205–214 (2004)

    Article  CAS  Google Scholar 

  23. Akyol Ö, Herken H, Uz E, Fadıllıoğlu E, Ünal S, Söğüt S, Ozyurt H, Savas HA. The indices of endogenous oxidative and antioxidative processes in plasma from schizophrenic patients: The possible role of oxidant/antioxidant imbalance. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 26: 995–1005 (2002)

    Article  CAS  Google Scholar 

  24. Moosmann B, Behl C. Antioxidants as treatment for neurodegenerative disorders. Exp. Opin. Investig. Drugs 11: 1407–1435 (2002)

    Article  CAS  Google Scholar 

  25. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8: 57–69 (2007)

    Article  CAS  Google Scholar 

  26. Allen NJ, Barres BA. Neuroscience: Glia-more than just brain glue. Nature 457: 675–677 (2009)

    Article  CAS  Google Scholar 

  27. Kim SU, de Vellis J. Microglia in health and disease. J. Neurosci. Res. 81: 302–313 (2005)

    Article  CAS  Google Scholar 

  28. Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics 7:354–365 (2010)

    Article  CAS  Google Scholar 

  29. Mattson MP. Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1: 120–129 (2000)

    Article  CAS  Google Scholar 

  30. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature 407: 802–809 (2000)

    Article  CAS  Google Scholar 

  31. Patockaa J, Stredab L. Brief review of natural nonprotein neurotoxins. ASA newsletter 89: 16–24 (2002)

    Google Scholar 

  32. Segura-Aguilar J, Kostrzewa R. Neurotoxins and neurotoxic species implicated in neurodegeneration. Neurotox. Res. 6: 615–630 (2004)

    Article  Google Scholar 

  33. Butterfield DA. Amyloid β-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic. Res. 36: 1307–1313 (2002)

    Article  CAS  Google Scholar 

  34. Ryu BM, Qian ZJ, Kim SK. Purification of a peptide from seahorse, that inhibits TPA-induced MMP, iNOS and COX-2 expression through MAPK and NF-[kappa] B activation, and induces human osteoblastic and chondrocytic differentiation. Chem. Biol. Interact. 184: 413–422 (2010)

    Article  CAS  Google Scholar 

  35. A Aneiros A, Garateix A. Bioactive peptides from marine sources: pharmacological properties and isolation procedures. J. Chromatogr. B 803: 41–53 (2004)

    Article  CAS  Google Scholar 

  36. Shahidi F, Zhong Y. Bioactive Peptides. J. AOAC Int. 91: 914–931 (2008)

    CAS  Google Scholar 

  37. Chiba T, Nishimoto I, Aiso S, Matsuoka M. Neuroprotection against neurodegenerative diseases. Mol. Neurobiol. 35: 55–84 (2007)

    Article  CAS  Google Scholar 

  38. Dejda A, Sokolowska P, Nowak JZ. Neuroprotective potential of three neuropeptides PACAP, VIP and PHI. Pharmacol. Rep. 57: 307–320 (2005)

    CAS  Google Scholar 

  39. Onoue S, Endo K, Ohshima K, Yajima T, Kashimoto K. The neuropeptide PACAP attenuates β-amyloid (1-42)-induced toxicity in PC12 cells. Peptides 23: 1471–1478 (2002)

    Article  CAS  Google Scholar 

  40. Delgado M, Varela N, Gonzalez RE. Vasoactive intestinal peptide protects against β-amyloidinduced neurodegeneration by inhibiting microglia activation at multiple levels. Glia 56: 1091–1103 (2008)

    Article  Google Scholar 

  41. Vo TS, Ngo DH, Kim JA, Ryu B, Kim SK. An antihypertensive peptide from tilapia gelatin diminishes free radical formation in murine microglial cells. J. Agr. Food Chem. 59: 12193–12197 (2011)

    Article  CAS  Google Scholar 

  42. Pei X, Yang R, Zhang Z, Gao L, Wang J, Xu Y, Zhao M, Han X, Liu Z, Li Y. Marine collagen peptide isolated from Chum Salmon (Oncorhynchus keta) skin facilitates learning and memory in aged C57BL/6J mice. Food Chem. 118: 333–340 (2010)

    Article  CAS  Google Scholar 

  43. Je JY, Kim SK. Water-soluble chitosan derivatives as a BACE1 inhibitor. Bioorg. Med. Chem. 13: 6551–6555 (2005)

    Article  CAS  Google Scholar 

  44. Kim SK., Rajapakse N. Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydr. Polym. 62: 357–368 (2005)

    Google Scholar 

  45. Ravi Kumar MNV. A review of chitin and chitosan applications. React. Funct. Polym. 46: 1–27 (2000)

    Article  Google Scholar 

  46. Jeon YJ, Park PJ, Kim SK. Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr. Polym. 44: 71–76 (2001)

    Article  CAS  Google Scholar 

  47. Jeon YJ, Shahidi F, Kim SK. Preparation of chitin and chitosan oligomers and their applications in physiological functional foods. Food Rev. Int. 16: 159–176 (2000)

    Article  CAS  Google Scholar 

  48. Turan K, Nagata K. Chitosan-DNA nanoparticles: The effect of cell type and hydrolysis of chitosan on in vitro DNA transfection. Pharm. Dev. Technol. 11: 503–12 (2006)

    Article  CAS  Google Scholar 

  49. Prabaharan M. Review paper: Chitosan derivatives as promising materials for controlled drug delivery. J. Biomater. Appl. 23: 5–36 (2008)

    Article  CAS  Google Scholar 

  50. Jeon YJ, Kim SK. Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohydr. Polym. 41: 133–141 (2000)

    Article  CAS  Google Scholar 

  51. Suzuki K, Mikami T, Okawa Y, Tokoro A, Suzuki S, Suzuki M. Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr. Res. 151: 403–408 (1986)

    Article  CAS  Google Scholar 

  52. Je JY, Park PJ, Kim SK. Free radical scavenging properties of hetero-chitooligosaccharides using an ESR spectroscopy. Food Chem. Toxicol. 42: 381–387 (2004)

    Article  CAS  Google Scholar 

  53. Rajapakse N, Kim MM, Mendis E, Huang R, Kim SK. Carboxylated chitooligosaccharides (CCOS) inhibit MMP-9 expression in human fibrosarcoma cells via down-regulation of AP-1. Biochim. Biophys. Acta 1760: 1780–1788 (2006)

    Article  CAS  Google Scholar 

  54. Kim MM, Kim SK. Chitooligosaccharides inhibit activation and expression of matrix metalloproteinase-2 in human dermal fibroblasts. FEBS Lett. 580: 2661–2666 (2006)

    Article  CAS  Google Scholar 

  55. van Ta Q, Kim MM, Kim SK. Inhibitory Effect of Chitooligosaccharides on Matrix Metalloproteinase-9 in Human Fibrosarcoma Cells (HT1080). Marine Biotechnol. 8: 593–599 (2006)

    Article  CAS  Google Scholar 

  56. Liu B, Liu W, Han B, Sun Y. Antidiabetic effects of chitooligosaccharides on pancreatic islet cells in streptozotocininduced diabetic rats. World J. Gastroenterol. 13: 725–731 (2007)

    CAS  Google Scholar 

  57. Artan M, Karadeniz F, Karagozlu MZ, Kim MM, Kim SK. Anti-HIV-1 activity of low molecular weight sulfated chitooligosaccharides. Carbohydr. Res. 345: 656–662 (2010)

    Article  CAS  Google Scholar 

  58. Yang EJ, Kim JG, Kim JY, Kim S, Lee N, Hyun CG. Antiinflammatory effect of chitosan oligosaccharides in RAW 264.7 cells. Centr. Eur. J. Biol. 5: 95–102 (2010)

    Article  CAS  Google Scholar 

  59. Liu D, Hsieh J, Fan X, Yang J, Chung T. Synthesis, characterization and drug delivery behaviors of new PCP polymeric micelles. Carbohydr. Polym. 68: 544–554 (2007)

    Article  CAS  Google Scholar 

  60. LaFerla FM, Green KN, Oddo S. Intracellular amyloid-[beta] in Alzheimer’s disease. Nat. Rev. Neurosci. 8: 499–509 (2007)

    Article  CAS  Google Scholar 

  61. Tabet N. Acetylcholinesterase inhibitors for Alzheimer’s disease: Anti-inflammatories in acetylcholine clothing! Age Ageing 35: 336–338 (2006)

    Article  CAS  Google Scholar 

  62. Terry AV Jr, Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther. 306: 821–827 (2003)

    Article  CAS  Google Scholar 

  63. Martinez A, Castro A. Novel cholinesterase inhibitors as future effective drugs for the treatment of Alzheimer’s disease. Expert Opin. Invest. Drugs 15: 1–12 (2005)

    Article  CAS  Google Scholar 

  64. Ibrahim F, André C, Thomassin M, Guillaume YC. Association mechanism of four acetylcholinesterase inhibitors (AChEIs) with human serum albumin: A biochromatographic approach. J. Pharmaceut. Biomed. Anal. 48: 1345–1350 (2008)

    Article  CAS  Google Scholar 

  65. Lee SH, Park JS, Kim SK, Ahn CB, Je JY. Chitooligosaccharides suppress the level of protein expression and acetylcholinesterase activity induced by A[beta]25-35 in PC12 cells. Bioorg. Med. Chem. Lett. 19: 860–862 (2009)

    Article  CAS  Google Scholar 

  66. Yoon NY, Ngo DN, Kim SK. Acetylcholinesterase inhibitory activity of novel chitooligosaccharide derivatives. Carbohydr. Polym. 78: 869–872 (2009)

    Article  CAS  Google Scholar 

  67. Agdeppa ED, Kepe V, Liu J, Flores-Torres S, Satyamurthy N, Petric A, Cole GM, Small GW, Huang SC, Barrio JR. Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer’s disease. J. Neurosci. 21: 1–5 (2001)

    Google Scholar 

  68. Lukiw WJ. Emerging amyloid beta (Ab) peptide modulators for the treatment of Alzheimer’s disease (AD). Expert Opin. Emerg. Drugs 13: 255–271 (2008)

    Article  CAS  Google Scholar 

  69. Okamura N, Suemoto T, Shiomitsu T, Suzuki M, Shimadzu H, Akatsu H, Yamamoto T, Arai H, Sasaki H, Yanai K, Staufenbiel M, Kudo Y, Sawada T. A novel imaging probe for in vivo detection of neuritic and diffuse amyloid plaques in the brain. J. Mol. Neurosci. 24: 47–255 (2004)

    Article  Google Scholar 

  70. Vassar R. β-Secretase (BACE) as a drug target for alzheimer’s disease. Adv. Drug Deliv. Rev. 54: 1589–1602 (2002)

    Article  CAS  Google Scholar 

  71. Hampel H, Shen Y. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a biological candidate marker of Alzheimer’s disease. Scan. J. Clin. Lab. Inv. 69: 8–12 (2009)

    Article  CAS  Google Scholar 

  72. Tang K, Hynan L, Baskin F, Rosenberg R. Platelet amyloid precursor protein processing: A bio-marker for Alzheimer’s disease. J. Neurol. Sci. 240: 53–58 (2006)

    Article  CAS  Google Scholar 

  73. Koo HN, Jeong HJ, Hong SH, Choi JH, An NH, Kim HM. High molecular weight water-soluble chitosan protects against apoptosis induced by serum starvation in human astrocytes. J. Nutr. Biochem. 13: 245–249 (2002)

    Article  CAS  Google Scholar 

  74. Zhou S, Yang Y, Gu X, Ding F. Chitooligosaccharides protect cultured hippocampal neurons against glutamate-induced neurotoxicity. Neurosci. Lett. 444: 270–274 (2008)

    Article  CAS  Google Scholar 

  75. Kim MS, Sung MJ, Seo SB, Yoo SJ, Lim WK, Kim HM. Watersoluble chitosan inhibits the production of pro-inflammatory cytokine in human astrocytoma cells activated by amyloid [beta] peptide and interleukin-1[beta]. Neurosci. Lett. 321: 105–109 (2002)

    Article  CAS  Google Scholar 

  76. Khodagholi F, Eftekharzadeh B, Maghsoudi N, Rezaei P. Chitosan prevents oxidative stress-induced amyloid β formation and cytotoxicity in NT2 neurons: involvement of transcription factors Nrf2 and NF-κB. Mol. Cell. Biochem. 337: 39–51 (2010)

    Article  CAS  Google Scholar 

  77. Pangestuti R, Bak SS, Kim SK. Attenuation of pro-inflammatory mediators in LPS-stimulated BV2 microglia by chitooligosaccharides via the MAPK signaling pathway. Int. J. Biol. Macromol. 49: 599–606 (2011)

    Article  CAS  Google Scholar 

  78. Ngo DH, Ngo DN, Vo TS, Ryu BM, Van TQ, Kim SK. Protective effects of aminoethyl-chitooligosaccharides against oxidative stress and inflammation in murine microglial BV-2 cells. Carbohydr. Polym. 88: 743–747 (2012)

    Article  CAS  Google Scholar 

  79. Jayakumar R, Nagahama H, Furuike T, Tamura H. Synthesis of phosphorylated chitosan by novel method and its characterization. Int. J. Biol. Macromol. 42: 335–339 (2008)

    Article  CAS  Google Scholar 

  80. Costa L, Fidelis G, Cordeiro S, Oliveira R, Sabry D, Cβmara R, Nobre L, Costa M, Almeida-Lima J, Farias E. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed. Pharmacother. 64: 21–28 (2010)

    Article  CAS  Google Scholar 

  81. Li B, Lu F, Wei X, Zhao R. Fucoidan: Structure and bioactivity. Molecules 13: 1671–1695 (2008)

    Article  CAS  Google Scholar 

  82. Cui Y, Zhang L, Zhang T, Luo D, Jia Y, Guo Z, Zhang Q, Wang X, Wang X. Inhibitory effect of fucoidan on nitric oxide production in lipopolysaccharide activated primary microglia. Clin. Exp. Pharmacol. Physiol. 37: 422–428 (2010)

    Article  CAS  Google Scholar 

  83. Heales S, Bolaños J, Stewart V, Brookes P, Land J, Clark J. Nitric oxide, mitochondria and neurological disease. BBA-Bioenergetics 1410: 215–228 (1999)

    Article  CAS  Google Scholar 

  84. Lee J, Grabb M, Zipfel G, Choi D. Brain tissue responses to ischemia. J. Clin. Invest. 106: 723–731 (2000)

    Article  CAS  Google Scholar 

  85. Jhamandas JH, Wie MB, Harris K, MacTavish D, Kar S. Fucoidan inhibits cellular and neurotoxic effects of β-amyloid (Aβ) in rat cholinergic basal forebrain neurons. Eur. J. Neurosci. 21: 2649–2659 (2005)

    Article  Google Scholar 

  86. Cowan CM, Thai J, Krajewski S, Reed JC, Nicholson DW, Kaufmann SH, Roskams AJ. Caspases 3 and 9 Send a Pro-Apoptotic Signal from Synapse to Cell Body in Olfactory Receptor Neurons. J. Neurosci. 21: 7099–7109 (2001)

    CAS  Google Scholar 

  87. Vila M, Przedborski S. Targeting programmed cell death in neurodegenerative diseases. Nat. Rev. Neurosci. 4: 365–375 (2003)

    Article  CAS  Google Scholar 

  88. Garrido J, Godoy J, Alvarez A, Bronfman M, Inestrosa N. Protein kinase C inhibits amyloid {beta} peptide neurotoxicity by acting on members of the Wnt pathway. FASEB J. 16: 1982–1984 (2002)

    CAS  Google Scholar 

  89. Lüder UH, Clayton MN. Induction of phlorotannins in the brown macroalga Ecklonia radiata (Laminariales, Phaeophyta) in response to simulated herbivory-the first microscopic study. Planta 218: 928–937 (2004)

    Article  CAS  Google Scholar 

  90. Wijesekara I, Yoon N, Kim S. Phlorotannins from Ecklonia cava (Phaeophyceae): Biological activities and potential health benefits. Biofactors 36: 408–414 (2010)

    Article  CAS  Google Scholar 

  91. Fallarero A, Loikkanen JJ, Männistö PT, Castañeda O, Vidal A. Effects of aqueous extracts of Halimeda incrassata (Ellis) Lamouroux and Bryothamnion triquetrum (S.G. Gmelim) Howe on hydrogen peroxide and methyl mercury-induced oxidative stress in GT1-7 mouse hypothalamic immortalized cells. Phytomed. 10: 39–47 (2003)

    Article  CAS  Google Scholar 

  92. Vidal NA, Motidome M, Mancini FJ, Fallarero LA, Tanae M, Torres L, Lapa A. Actividad antioxidante y ácidos fenólicos del alga marina Bryothamnion triquetrum (SG Gmelim) Howe; Antioxidant activity related to phenolic acids in the aqueous extract of the marine seaweed Bryothamnin triquetrum (SG Gmelim) Howe. Rev. Bras. Cienc. Farm. 37: 373–382 (2001)

    Google Scholar 

  93. Jung W, Heo S, Jeon Y, Lee C, Park Y, Byun H, Choi Y, Park S, Choi I. Inhibitory effects and molecular mechanism of dieckol isolated from marine brown alga on COX-2 and iNOS in microglial cells. J. Agr. Food Chem. 57: 4439–4446 (2009)

    Article  CAS  Google Scholar 

  94. Jung WK, Ahn YW, Lee SH, Choi YH, Kim SK, Yea SS, Choi I, Park SG, Seo SK, Lee SW, Choi IW. Ecklonia cava ethanolic extracts inhibit lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression in BV2 microglia via the MAP kinase and NF-[kappa]B pathways. Food Chem. Toxicol. 47: 410–417 (2009)

    Article  CAS  Google Scholar 

  95. Myung C, Shin H, Bao H, Yeo S, Lee B, Kang J. Improvement of memory by dieckol and phlorofucofuroeckol in ethanol-treated mice: Possible involvement of the inhibition of acetylcholinesterase. Arch. Pharm. Res. 28: 691–698 (2005)

    Article  CAS  Google Scholar 

  96. Yoon N, Chung H, Kim H, Choi J. Acetyl and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fish. Sci. 74: 200–207 (2008)

    Article  CAS  Google Scholar 

  97. Jung H, Oh S, Choi J. Molecular docking studies of phlorotannins from Eisenia bicyclis with BACE1 inhibitory activity. Bioorg. Med. Chem. Lett. 20: 3211–3215 (2010)

    Article  CAS  Google Scholar 

  98. Tang K, Hynan L, Baskin F, Rosenberg R. Platelet amyloid precursor protein processing: A bio-marker for Alzheimer’s disease. J. Neurol. Sci. 240: 53–58 (2006)

    Article  CAS  Google Scholar 

  99. Pangestuti R, Kim SK. Neuroprotective Effects of Marine Algae. Mar. Drugs 9: 803–818 (2011)

    Article  CAS  Google Scholar 

  100. Roh MK, Uddin MS, Chun BS. Extraction of fucoxanthin and polyphenol from Undaria pinnatifida using supercritical carbon dioxide with co-solvent. Biotechnol. Bioproc. Eng. 13: 724–729 (2008)

    Article  CAS  Google Scholar 

  101. Shang YF, Kim SM, Lee WJ, Um BH. Pressurized liquid method for fucoxanthin extraction from Eisenia bicyclis (Kjellman) Setchell. J. Biosci. Bioeng. 111: 237–241 (2010)

    Article  CAS  Google Scholar 

  102. Kim SM, Shang YF, Um BH. A preparative method for isolation of fucoxanthin from Eisenia bicyclis by centrifugal partition chromatography. Phytochem. Anal. 22: 3222–329 (2011)

    Google Scholar 

  103. Delgado VF, Jiménez A, Paredes-López O. Natural pigments: Carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Crit. Rev. Food Sci. Nutr. 40: 173–289 (2000)

    Article  Google Scholar 

  104. Khan S, Kong C, Kim J, Kim S. Protective effect of Amphiroa dilatata on ROS induced oxidative damage and MMP expressions in HT1080 cells. Biotechnol. Bioproc. Eng. 15: 191–198 (2010)

    Article  CAS  Google Scholar 

  105. Okuzumi J, Nishino H, Murakoshi M, Iwashima A, Tanaka Y, Yamane T, Fujita Y, Takahashi T. Inhibitory effects of fucoxanthin, a natural carotenoid, on N-myc expression and cell cycle progression in human malignant tumor cells. Cancer Lett. 55: 75–81 (1990)

    Article  CAS  Google Scholar 

  106. Ikeda K, Kitamura A, Machida H, Watanabe M, Negishi H, Hiraoka J, Nakano T. Effect of Undaria pinnatifida (Wakame) on the development of cerebrovascular diseases in stroke prone spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 30: 44–48 (2003)

    Article  CAS  Google Scholar 

  107. Khodosevich K, Monyer H. Signaling involved in neurite outgrowth of postnatally born subventricular zone neurons in vitro. BMC Neurosci. 11: 1–11 (2010)

    Article  CAS  Google Scholar 

  108. Ina A, Hayashi K, Nozaki H, Kamei Y. Pheophytin a, a low molecular weight compound found in the marine brown alga Sargassum fulvellum, promotes the differentiation of PC12 cells. Int. J. Dev. Neurosci. 25: 63–68 (2007)

    Article  CAS  Google Scholar 

  109. Ina A, Kamei Y. Vitamin B12, a chlorophyll-related analog to pheophytin a from marine brown algae, promotes neurite outgrowth and stimulates differentiation in PC12 cells. Cytotechnology 52: 181–187 (2006)

    Article  CAS  Google Scholar 

  110. Venugopal V, Shahidi F. Structure and composition of fish muscle. Food Rev. Int. 12: 175–197 (1996)

    Article  Google Scholar 

  111. Kalmijn S, van Boxtel MPJ, Ocké M, Verschuren WMM, Kromhout D, Launer LJ. Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 62: 275–280 (2004)

    Article  CAS  Google Scholar 

  112. Falinska AM, Bascoul-Colombo C, Guschina IA, Good M, Harwood JL. The role of n-3 dietary polyunsaturated fatty acids in brain function and ameliorating Alzheimer’s disease: Opportunities for biotechnology in the development of nutraceuticals. Biocatal. Agric. Biotechnol. 1: 159–166 (2012)

    CAS  Google Scholar 

  113. Connor WE, Lowensohn R, Hatcher L. Increased docosahexaenoic acid levels in human newborn infants by administration of sardines and fish oil during pregnancy. Lipids 31:183–187 (1996)

    Article  Google Scholar 

  114. Ngo DH, Wijesekara I, Vo TS, Van Ta Q, Kim SK. Marine foodderived functional ingredients as potential antioxidants in the food industry: An overview. Food Res. Int. 44: 523–529 (2010)

    Article  CAS  Google Scholar 

  115. Jeon YJ, Kim SK. Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohydr. Polym. 41: 133–141 (2000)

    Article  CAS  Google Scholar 

  116. Kim SK, Rajapakse N. Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydr. Polym. 62: 357–368 (2005)

    Article  CAS  Google Scholar 

  117. Kim S, Wijesekara I. Development and biological activities of marine-derived bioactive peptides: A review. J. Func. Foods 2: 1–9 (2010)

    Article  CAS  Google Scholar 

  118. Wijesinghe WAJP, Jeon YJ. Enzyme-assistant extraction (EAE) of bioactive components: A useful approach for recovery of industrially important metabolites from seaweeds: A review. Fitoterapia 83: 6–12 (2012)

    Article  CAS  Google Scholar 

  119. Li B, Smith B, Hossain MM. Extraction of phenolics from citrus peels: II. Enzyme-assisted extraction method. Sep. Purif. Technol. 48: 189–196 (2006)

    Article  CAS  Google Scholar 

  120. McRory J, Sherwood NM. Two protochordate genes encode pituitary adenylate cyclase-activating polypeptide and related family members. Endocrinology 138: 2380–2390 (1997)

    Article  CAS  Google Scholar 

  121. Matsuda K, Yoshida T, Nagano Y, Kashimoto K, Yatohgo T, Shimomura H, Shioda S, Arimura A, Uchiyama M. Purification and primary structure of pituitary adenylate cyclase activating polypeptide (PACAP) from the brain of an elasmobranch, stingray, Dasyatis akajei. Peptides 19: 1489–1495 (1998)

    Article  CAS  Google Scholar 

  122. Wang Y, Conlon JM. Purification and structural characterization of vasoactive intestinal polypeptide from the trout and bowfin. Gen. Comp. Endocr. 98: 94–101 (1995)

    Article  CAS  Google Scholar 

  123. Kim SK, Mendis E. Bioactive compounds from marine processing byproducts-a review. Food Res. Int. 39: 383–393 (2006)

    Article  CAS  Google Scholar 

  124. Zuta C, Simpson B, Chan H, Phillips L. Concentrating PUFA from mackerel processing waste. J. Am. Oil Chem. Soc. 80: 933–936 (2003)

    Article  CAS  Google Scholar 

  125. Sun T, Pigott G, Herwig R. Lipase-assisted concentration of n3 polyunsaturated fatty acids from Viscera of farmed atlantic Salmon (Salmo salar L.). J. Food Sci. 67: 130–136 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Kwon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pangestuti, R., Kim, SK. Marine-derived bioactive materials for neuroprotection. Food Sci Biotechnol 22, 1–12 (2013). https://doi.org/10.1007/s10068-013-0200-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0200-z

Keywords

Navigation