Advertisement

Food Science and Biotechnology

, Volume 22, Issue 3, pp 859–864 | Cite as

Supercritical fluid extract from maca alleviates colitis induced by dextran sulfate sodium in mice

  • Jae Young Cho
  • Eun Hye Choi
  • Jung Il Kang
  • Changsun Choi
  • Hyang Sook ChunEmail author
Research Note

Abstract

The objective of this study was to investigate the possible protective effects of maca (Lepidium meyenii) extract (MLE) by supercritical fluid extraction on dextran sodium sulfate (DSS)-induced colitis. Experimental colitis was induced by giving male BALB/c mice 3% DSS in drinking water, and MLE (30 mg/kg BW), sulfasalazine (100 mg/kg BW) or vehicle were administered orally. DSS challenge caused significant body weight loss, rectal bleeding, diarrhea, shortened colon length, histological changes, and increased myeloperoxidase (MPO) activity in DSS-treated mice. Oral administration of MLE significantly relieved the symptoms of diarrhea and rectal bleeding, and reduced colonic MPO activity (p<0.05). MLE treatment inhibited expression of several colonic proteins related to inflammatory responses, such as interleukin (IL)-1β, tumor necrosis factor-α, IL-6, and S100 calcium-binding protein A8, whose expressions were increased significantly by DSS treatment. These results suggest that MLE can alleviate DSS-induced colitis in mice by modulating colonic inflammatory mediators.

Keywords

colitis dextran sulfate sodium inflammation maca extract supercritical fluid extraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ouyang Q, Tandon R, Goh KL, Pan GZ, Fock KM, Fiocchi C, Lam SK, Xiao SD. Management consensus of inflammatory bowel disease for the Asia-Pacific region. J. Gastroenterol. Hepatol. 21: 1772–1782 (2006)CrossRefGoogle Scholar
  2. 2.
    Kamm MA. Biological drugs in Crohn’s disease. Aliment. Pharm. Therap. 24: 80–89 (2006)CrossRefGoogle Scholar
  3. 3.
    Sandborn WJ, Targan SR. Biologic therapy of inflammatory bowel disease. Gastroenterology 122: 1592–1608 (2002)CrossRefGoogle Scholar
  4. 4.
    Cho JY, Chang H, Lee S, Kim H, Hwang J, Chun HS. Amelioration of dextran sulfate sodium-induced colitis in mice by oral administration of β-caryophyllene, a sesquiterpene. Life Sci. 80: 932–939 (2007)CrossRefGoogle Scholar
  5. 5.
    Cho JY, Chi S, Chun HS. Oral administration of docosahexaenoic acid attenuates colitis induced by dextran sulfate sodium in mice. Mol. Nutr. Food Res. 55: 239–246 (2011)CrossRefGoogle Scholar
  6. 6.
    Wang Y, Wang Y, McNeil B, Harvey LM. Maca: An Andean crop with multi-pharmacological functions. Food Res. Int. 40: 783–792 (2007)CrossRefGoogle Scholar
  7. 7.
    Sandoval M, Okuhama NN, Angeles FM, Melchor W, Condezo LA, Lao J, Miller MJS. Antioxidant activity of the cruciferous vegetable maca (Lepidium meyenii). Food Chem. 79: 207–213 (2002)CrossRefGoogle Scholar
  8. 8.
    Choi EH, Kang JI, Cho JY, Lee SH, Kim TS, Yeo IH, Chun HS. Supplementation of standardized lipid-soluble extract from maca (Lepidium meyenii) increases swimming endurance capacity in rats. J. Funct. Foods 4: 568–573 (2012)CrossRefGoogle Scholar
  9. 9.
    Miller MJ, Ahmed S, Bobrowski P, Haqqi TM. The chondroprotective actions of a natural product are associated with the activation of IGF-1 production by human chondrocytes despite the presence of IL-1β. BMC Complement. Altern. Med. 6: 13–22 (2006)CrossRefGoogle Scholar
  10. 10.
    Egger B, Bajaj-Elliott M, MacDonald TT, Inglin R, Eysselein VE, Buchler MW. Characterisation of acute murine dextran sodium sulphate colitis: Cytokine profile and dose dependency. Digestion 62: 240–248 (2000)CrossRefGoogle Scholar
  11. 11.
    Zheng P, Niu FL, Liu WZ, Shi Y, Lu LG. Anti-inflammatory mechanism of oxymatrine in dextran sulfate sodium-induced colitis of rats. World J. Gastroenterol. 11: 4912–4915 (2005)Google Scholar
  12. 12.
    Lee SH, Kang JI, Lee SY, Ha HC, Song YK, Byun SY. Isolation and identification of macamides from the lipidic extract of maca (Lepidium meyenii) using supercritical carbon dioxide. Korean J. Biotech. Bioeng. 23: 153–157 (2008)Google Scholar
  13. 13.
    Wahl C, Liptay S, Adler G, Schmid RM. Sulfasalazine: A potent and specific inhibitor of nuclear factor κB. J. Clin. Invest. 101: 1163–1174 (1998)CrossRefGoogle Scholar
  14. 14.
    Chin AC, Parkos CA. Neutrophil transepithelial migration and epithelial barrier function in IBD: Potential targets for inhibiting neutrophil trafficking. Ann. NY Acad. Sci. 1072: 276–287 (2006)CrossRefGoogle Scholar
  15. 15.
    Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab. Invest. 69: 238–249 (1993)Google Scholar
  16. 16.
    Dieleman LA, Ridwan BU, Tennyson GS, Beagley KW, Bucy RP, Elson CO. Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology 107: 1643–1652 (1994)Google Scholar
  17. 17.
    Tomoyose M, Mitsuyama K, Ishida H, Toyonaga A, Tanikawa K. Role of interleukin-10 in a murine model of dextran sulfate sodiuminduced colitis. Scand. J. Gastroenterol. 33: 435–440 (1998)CrossRefGoogle Scholar
  18. 18.
    Naito Y, Takagi T, Uchiyama K, Kuroda M, Kokura S, Ichikawa H, Yanagisawa R, Inoue K, Takano H, Satoh M, Yoshida N, Okanoue T, Yoshikawa T. Reduced intestinal inflammation induced by dextran sodium sulfate in interleukin-6-deficient mice. Int. J. Mol. Med. 14: 191–196 (2004)Google Scholar
  19. 19.
    Lovato P, Brender C, Agnholt J, Kelsen J, Kaltoft K, Svejgaard A, Eriksen KW, Woetmann A, Odum N. Constitutive STAT3 activation in intestinal T cells from patients with Crohn’s disease. J. Biol. Chem. 278: 16777–16781 (2003)CrossRefGoogle Scholar
  20. 20.
    Musso A, Dentelli P, Carlino A, Chiusa L, Repici A, Sturm A, Fiocchi C, Rizzetto M, Pegoraro L, Sategna-Guidetti C, Brizzi MF. Signal transducers and activators of transcription 3 signaling pathway: An essential mediator of inflammatory bowel disease and other forms of intestinal inflammation. Inflamm. Bowel Dis. 11: 91–98 (2005)CrossRefGoogle Scholar
  21. 21.
    Turovskaya O, Foell D, Sinha P, Vogl T, Newlin R, Nayak J, Nguyen M, Olsson A, Nawroth PP, Bierhaus A, Varki N, Kronenberg M, Freeze HH, Srikrishna G. RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitis-associated carcinogenesis. Carcinogenesis 29: 2035–2043 (2008)CrossRefGoogle Scholar
  22. 22.
    Sunahori K, Yamamura M, Yamana J, Takasugi K, Kawashima M, Yamamoto H, Chazin WJ, Nakatani Y, Yui S, Makino H. The S100A8/A9 heterodimer amplifies proinflammatory cytokine production by macrophages via activation of nuclear factor κB and p38 mitogen-activated protein kinase in rheumatoid arthritis. Arthritis Res. Ther. 8: R69 (2006)CrossRefGoogle Scholar
  23. 23.
    Howarth GS. Insulin-like growth factor-I and the gastrointestinal system: Therapeutic indications and safety. J. Nutr. 133: 2109–2112 (2003)Google Scholar
  24. 24.
    Grisham MB. Oxidants and free radicals in inflammatory bowel disease. Lancet 344: 859–861 (1994)CrossRefGoogle Scholar
  25. 25.
    Rezaie A, Parker RD, Abdollahi M. Oxidative stress and pathogenesis of inflammatory bowel disease: An epiphenomenon or the cause? Digest. Dis. Sci. 52: 2015–2021 (2007)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jae Young Cho
    • 1
  • Eun Hye Choi
    • 1
    • 2
  • Jung Il Kang
    • 2
  • Changsun Choi
    • 3
  • Hyang Sook Chun
    • 1
    • 3
    Email author
  1. 1.Divisions of Convergence TechnologyKorea Food Research InstituteSeongnam, GyeonggiKorea
  2. 2.Institute of Food & CulturePulmuone Holdings Co., Ltd.Seodaemun, SeoulKorea
  3. 3.School of Food Science and TechnologyChung-Ang UniversityAnseong, GyeonggiKorea

Personalised recommendations