Skip to main content
Log in

Molecular and morphological identification of fungal species isolated from rice meju

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The microflora of natural fermented Korean rice meju are assumed to be diverse, but has not yet been investigated. The fungi was isolated and identified from rice meju on the bases of morphology, culture characteristics, and molecular approaches of internal transcribed spacer and β-tubulin gene sequencing, and their enzyme activities were determined. Six species of fungi were primarily isolated from rice meju, specifically Aspergillus candidus, Aspergillus tritici, Cladosporium oxysporum, Penicillium commune, Penicillium griseofulvum, and Rhizomucor variabilis var. regularior. All isolates produced protease (5.17–15.78), and all strains except Mucor circinelloides PR06 expressed amylase activities (0.04–0.23). In comparison, lipase was produced by zygomycetous fungi isolates (1.70–0.25) and Aspergillus oryzae PR07 (0.68). The enzyme producing fungal strains might be involved in the rice meju fermentation. The identification of fungal diversity in meju is useful for understanding the fermentation processes and these strains might be used in the fermentation of foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oh HJ, Kim CS. Antioxidant and nitrite scavenging ability of fermented soybean foods (cheonggukjang, doenjang). J. Korean Soc. Food Sci. Nutr. 36: 1503–1510 (2007)

    Article  CAS  Google Scholar 

  2. Shin ZI, Ahn CW, Nam HS, Lee HJ, Moon TH. Fractionation of angiotensin converting enzyme (ACE) inhibitory peptides from soybean paste. Korean J. Food Sci. Technol. 27: 230–234 (1995)

    Google Scholar 

  3. Yoon SS. Korean Food History and Cooking. Suhaksa, Seoul, Korea. pp. 54–59 (1984)

    Google Scholar 

  4. Jung DH, Lee HC, Shim SK, Han BR. Fermented Soybean Food. Hongikje, Seoul, Korea. pp. 519–631 (2006)

    Google Scholar 

  5. Murooka Y, Yamshita M. Traditional healthful fermented products of Japan. J. Ind. Microbiol. Biot. 35: 791–798 (2008)

    Article  CAS  Google Scholar 

  6. Lee SS, Park KH, Choi KJ, Won SA. Identification and isolation of Zygomycetous fungi found on meju, a raw material of Korean traditional soy sources. Korean J. Mycol. 21: 172–187 (1993)

    CAS  Google Scholar 

  7. Lim SI, Kwak KJ, Choi SY, Yoo JY. Characteristics of protease produced by Rhizopus stolonifer, Rhizopus oryzae, and Absidia corymbifera from Korean traditional meju. J. Korean Soc. Food Sci. Nutr. 31: 211–215 (2002)

    Article  CAS  Google Scholar 

  8. Jung SW, Kim YS, Chung KS. Effects of preparation methods and aging temperatures on the properties of rice-doenjang. Agric. Chem. Biotechnol. 38: 83–89 (1995)

    Google Scholar 

  9. Jung SW, Kwon DJ, Koo MS, Kim YS. Quality characteristics and acceptance for doenjang prepared with rice. Agric. Chem. Biotechnol. 37: 266–271 (1994)

    Google Scholar 

  10. Kim KY, Yang YS, Youn JY. Fermentation Food. Kyomunsa, Seoul, Korea. pp. 78–79 (2009)

    Google Scholar 

  11. Shimizu K, Keller NP. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 157: 591–600 (2001)

    CAS  Google Scholar 

  12. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microb. 61: 1323–1330 (1995)

    CAS  Google Scholar 

  13. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The Clustal-X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876–4882 (1997)

    Article  CAS  Google Scholar 

  14. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599 (2007)

    Article  CAS  Google Scholar 

  15. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120 (1980)

    Article  CAS  Google Scholar 

  16. Anson ML. The estimation of pepsin, trypsin, papain, and cathepsin with hemoglulobin. J. Gen. Physiol. 22: 79–89 (1938)

    Article  CAS  Google Scholar 

  17. Chae SK, Kang KS, Ma SJ, Bang GW, Oh MH, Oh SH. In Standard Food Analysis. Gigumunhwasa Co., Seoul, Korea. pp. 299–301, 403–404 (2006)

    Google Scholar 

  18. Wrolstad RE, Acree TE, Decker EA, Penner MH, Reid DS, Schwartz SJ, Shoemaker CF, Smith DM, Sporns P. Handbook of Food Analytical Chemistry. John Wiley & Sons Inc., Hoboken, NJ, USA. pp. 373–375 (2004)

    Book  Google Scholar 

  19. Lee JS, Yi SH, Kwon SJ, Ahn C, Yoo JY. Isolation, identification, and cultural conditions of yeasts from traditional meju. Korean J. Appl. Microbiol. Biotechnol. 25: 435–441 (1997)

    Google Scholar 

  20. Olempska-Beer ZS, Merker RI, Ditto MD, DiNovi MJ. Foodprocessing enzymes from recombinant microorganisms-A review. Regul. Toxicol. Pharm. 45: 144–158 (2006)

    Article  CAS  Google Scholar 

  21. Chang PK, Ehrlich KC. What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae. Int. J. Food Microbiol. 138: 189–199 (2010)

    Article  CAS  Google Scholar 

  22. Kim JY, Yeo SH, Baek SY, Choi HS. Molecular and morphological identification of fungal species isolated from bealmijang meju. J. Microbiol. Biotechn. 21: 1270–1279 (2011)

    Article  CAS  Google Scholar 

  23. Varga J, Frisvad JC, Samson RA. Polyphasic taxonomy of Aspergillus section Candidi based on molecular, morphological, and physiological data. Stud. Mycol. 59: 75–88 (2007)

    Article  CAS  Google Scholar 

  24. Park JW, Choi SY, Hwang HJ, Kim YB. Fungal mycoflora and mycotoxins in Korean polished rice destined for humans. Int. J. Food Microbiol. 103: 305–314 (2005)

    Article  CAS  Google Scholar 

  25. Rundberget T, Skaar I, Flåøyen A. The presence of Penicillium and Penicillium mycotoxins in food wastes. Int. J. Food Microbiol. 90: 181–188 (2004)

    Article  CAS  Google Scholar 

  26. Lee SS, Sung C, Bae JC, Yu JY. Ganjang and meju made with a single inoculum of the microorganism isolated from the Korean traditional meju. J. Korean Soc. Food Sci. Nutr. 26: 751–758 (1997)

    Google Scholar 

  27. Jimenez M, Mateo R, Querol A, Mateo JJ, Hernandez E. Differentiation of Penicillium griseofulvum Dierckx isolates by enzyme assays and by patulin and griseofulvin analyses. Appl. Environ. Microb. 56: 3718–3722 (1990)

    CAS  Google Scholar 

  28. Bensch K, Groenevald JC, Dijksterhuis J, Starink-Willemse M, Andersen B, Summerell BA, Shin H-D, Dugan FM, Schroers HJ, Braun U, Crous PW. Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Stud. Mycol. 67: 1–94 (2010)

    Article  CAS  Google Scholar 

  29. Silva CF, Batista LR, Abreu LM, Dias ES, Schwan RF. Succession of bacterial and fungal communities during natural coffee (Coffea arabica) fermentation. Food Microbiol. 25: 951–957 (2008)

    Article  CAS  Google Scholar 

  30. Hahn YS, Kim KJ. Studies on manufacturing of soy sauce. 5. On genus Mucor in Korean bean meju. Report of the National Industrial Research Institute, Korea 11: 140–152 (1962)

    Google Scholar 

  31. Kim DH, Kim SH. Biochemical characteristics of whole soybean cereals fermented with Mucor and Rhizopus strains. Korean J. Food Sci. Technol. 31: 176–182 (1999)

    Google Scholar 

  32. Lee JH, Kim MH, Lim SS. Antioxidative materials in domestic meju and doenjang. 1. Lipid oxidation and browning during fermentation of meju and doenjang. J. Korean Soc. Food Sci. Nutr. 20: 148–155 (1991)

    CAS  Google Scholar 

  33. Yoo JY, Kim HG, Kwon DJ. Improved process for preparation of traditional ganjang (Korean-style soy sauce). J. Korean Soc. Food Sci. Nutr. 27: 268–274 (1998)

    Google Scholar 

  34. Lee JS, Yi SH, Kwon SJ, Ahn C, Yoo JY. Enzyme activities and physiological functionality of yeasts from traditional meju. Korean J. Appl. Microbiol. Biotechnol. 25: 448–453 (1997)

    CAS  Google Scholar 

  35. Takeuchi A, Shimizu-Ibuka A, Nishiyama Y, Mura K, Okada S, Tokue C, Arai S. Purification and characterization of an α-amylase of Pichia burtonii isolated from the traditional starter “Murcha” in Nepal. Biosci. Biotech. Bioch. 70: 3019–3024 (2006)

    Article  CAS  Google Scholar 

  36. Kim K, Nam M, Nam BR, Ryu HJ, Song JE, Shin WB, Lee SH, Chung DH. Determination of total aflatoxins in foods by parallelism of ELISA and LC/MS/MS. J. Env. Hlth. Sci. 36: 52–60 (2010)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hye Sun Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.Y., Lee, S.Y. & Choi, H.S. Molecular and morphological identification of fungal species isolated from rice meju . Food Sci Biotechnol 22, 721–728 (2013). https://doi.org/10.1007/s10068-013-0137-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0137-2

Keywords

Navigation