Food Science and Biotechnology

, Volume 22, Issue 2, pp 455–463 | Cite as

In vitro antioxidant, antimicrobial, and antitumor activities of bitter almond and sweet apricot (Prunus armeniaca L.) kernels

  • Eman Zakaria GomaaEmail author
Research Article


The aim of this study was to investigate in vitro antioxidant, antimicrobial, and antitumor activities of water, methanol, and ethanol extracts of sweet apricot and bitter almond kernels. The fruit extracts were evaluated for their antioxidant activities using various antioxidant methodologies including phosphomolybdenum assay (total antioxidant capacity), free radical scavenging assay, ferric ion reducing power, and β-carotene/linoleic acid bleaching test system. The antioxidant capacity of the sweet apricot kernels was better than those recorded for bitter almond ones. The highest total antioxidant activity (59.53 mg/g dry extract), ferric ion reducing power (1.626), antioxidant index (67%), total phenolic content (3.290 mg/g dry extract), and total lycopene content (4.70mg/mL) were detected in the aqueous extract of sweet apricot kernels. The antimicrobial activities of the above extracts were also tested against some pathogenic microorganisms using a disc-diffusion method. Additionally, the extracts of sweet apricot and bitter almond kernels could inhibit the growth of human breast (MCF-7), colon (HCT-116), and hepatocellular (Hep-G2) carcinoma cell lines in a dose-dependent manner with different sensitivity between cell lines. The overall results indicate promising baseline information for the potential uses of apricot (Prunus armeniaca L.) fruit extracts in the treatment of infectious diseases and tumors.


apricot kernel antioxidant antimicrobial antitumor activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tsao R, Deng Z. Separation procedures for naturally occurring antioxidant phytochemicals. J. Chromatogr. B 812: 85–99 (2004)Google Scholar
  2. 2.
    Surh YZ, Ferguson LR. Dietary and medicinal anti-mutagens and anticarcinogens: Molecular mechanisms and chemopreventive potential-high light of a symposium. Mutat. Res. 523–524: 1–8 (2003)Google Scholar
  3. 3.
    Botterweck AA, Verhagen H, Goldbohm RA, Kleinjans J, Brandt PA. Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: Results from analyses in the Netherlands cohort study. Food Chem. Toxicol. 38: 599–605 (2000)CrossRefGoogle Scholar
  4. 4.
    Ren W, Qiao Z, Wang H, Zhu L, Zhang L. Flavonoids: Promising anticancer agents. Med. Res. Rev. 23: 519–534 (2003)CrossRefGoogle Scholar
  5. 5.
    Chanwitheesuk A, Teerawutgulrag A, Rakariyatham N. Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food Chem. 92: 491–497 (2005)CrossRefGoogle Scholar
  6. 6.
    Yigit D, Yigit N, Mavi A. Antioxidant and antimicrobial activities of bitter and sweet apricot (Prunus armeniaca L.) kernels. Braz. J. Med. Biol. Res. 42: 346–352 (2009)Google Scholar
  7. 7.
    Haciseferooullari H, Gezer I, Özcan MM, Asma BM. Postharvest chemical and physical mechanical properties of some apricot varieties cultivated in Turkey. J. Food Eng. 78: 364–373 (2007)CrossRefGoogle Scholar
  8. 8.
    Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphor molybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 269: 337–341 (1999)CrossRefGoogle Scholar
  9. 9.
    Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 26: 1199–1200 (2002)Google Scholar
  10. 10.
    Yildirim A, Mavi A, Kara AA. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J. Agr. Food Chem. 49: 4083–4089 (2001)CrossRefGoogle Scholar
  11. 11.
    Sokmen A, Gulluce M, Akpulat HA, Daferera D, Tepe B, Polissiou M, Sokmen M, Sahin F. The in vitro antimicrobial and antioxidant activities of the essential oils and methanol extracts of endemic Thymus spathulifolius. Food Control 15: 627–634 (2004)CrossRefGoogle Scholar
  12. 12.
    Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolke RH. Manual of clinical microbiology. ASM Press, Washington, DC, USA. pp. 1327–1341 (1995)Google Scholar
  13. 13.
    Evans WC. Pharmacopoeial and related drugs of biological origin. pp. 327–332. In: Trease and Evan Pharmacognosy. Saunders WB Co., Ltd., London, UK (1996)Google Scholar
  14. 14.
    Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55–63 (1983)CrossRefGoogle Scholar
  15. 15.
    Vijayan P, Raghu C, Ashok G, Dhanaraj SA, Suresh B. Antiviral activity of medicinal plants of Nilgiris. Indian J. Med. Res. 120: 24–29 (2004)Google Scholar
  16. 16.
    Amin I, Norazaidah Y, Hainida K. Antioxidant activity and phenolic content of raw and blanched Amaranthus species. Food Chem. 94: 47–52 (2006)CrossRefGoogle Scholar
  17. 17.
    Zou YP, Lu YH, Wei DZ. Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro. J. Sci. Food Agr. 52: 5032–5039 (2004)CrossRefGoogle Scholar
  18. 18.
    Nagata M, Yamashita I. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaish 39: 925–928 (1992)CrossRefGoogle Scholar
  19. 19.
    Moure A, Cruz JM, Franco D, Dominguez JM, Sineiro J, Dominguez H, Nunez MJ, Parajo JC. Natural antioxidants from residual sources. Food Chem. 72: 145–171 (2001)CrossRefGoogle Scholar
  20. 20.
    Lai LS, Chou ST, Chao WW. Studies on the antioxidative activities of Hsian-tsao (Mesona procumbens Hemsl) leaf gum. J. Agr. Food Chem. 49: 963–968 (2001)CrossRefGoogle Scholar
  21. 21.
    Adedapo AA, Jimoh FO, Koduru S, Masika PJ, Afolayan JA. Assessment of the medicinal potentials of the methanol extracts of the leaves and stems of Buddleja saligna. BMC Complem. Altern. M. 9: 21–29 (2009)CrossRefGoogle Scholar
  22. 22.
    Bozin B, Dukic NM, Samojlic I, Goran A, Igic R. Phenolics as antioxidants in garlic (Allium sativum L., Alliaceae). J. Food Chem. 111: 925–929 (2008)CrossRefGoogle Scholar
  23. 23.
    Archana B, Dasgupta N, De B. In vitro study of antioxidant activity of Syzygium cumini fruit. Food Chem. 90: 727–733 (2005)CrossRefGoogle Scholar
  24. 24.
    Meir S, Kanner J, Akiri B, Hadas SP. Determination and involvement of water reducing compounds in oxidative defense systems of various senescing leaves. J. Agr. Food Chem. 43: 1813–1819 (1995)CrossRefGoogle Scholar
  25. 25.
    Duh PD. Antioxidant activity of burdock (Arctium lappa Linne): Its scavenging effect on free radicals and active oxygen. J Am. Oil Chem. Soc. 75: 455–461 (1998)CrossRefGoogle Scholar
  26. 26.
    Dorman H, Kosar M, Kahlos K, Holm Y, Hiltunen R. Antioxidant properties and composition of aqueous extracts from mentha species, hybrids, varieties, and cultivars. J. Agr. Food Chem. 51: 4563–4569 (2003)CrossRefGoogle Scholar
  27. 27.
    Yu J, Wang L, Walzem RL, Miller EG, Pike LM, Patil BS. Antioxidant activity of citrus limonoids, flavonoids, and coumarins. J. Agr. Food Chem. 53: 2009–2014 (2005)CrossRefGoogle Scholar
  28. 28.
    Adedapo AA, Jimoh FO, Koduru S, Masika PJ, Afolayan JA. Antibacterial and antioxidant properties of the methanol extracts of the leaves and stems of Calpurnia aurea. BMC Complem. Altern. M. 8: 53–60 (2008)CrossRefGoogle Scholar
  29. 29.
    Natarajan D, Britto SJ, Srinivasan K, Nagamurugan N, Mohanasundari C, Perumal G. Anti-bacterial activity of Euphorbia fusiformis, a rare medicinal herb. J. Ethnopharmacol. 102: 123–126 (2005)CrossRefGoogle Scholar
  30. 30.
    Pyla R, Kim TJ, Silva JL, Jung YS. Enhanced antimicrobial activity of starch-based film impregnated with thermally processed tannic acid, a strong antioxidant. Int. J. Food Microbiol. 28: 154–160 (2010)CrossRefGoogle Scholar
  31. 31.
    Rios AD, Antunes LM, Bianchi MD. Bixin and lycopene modulation of free radical generation induced by cisplatin-DNA interaction. Food Chem. 113: 1113–1118 (2009)CrossRefGoogle Scholar
  32. 32.
    Kampa M, Nifli AP, Notas G, Castanas E. Polyphenols and cancer cell growth. Rev. Physiol. Bioch. P. 159: 79–113 (2007)CrossRefGoogle Scholar
  33. 33.
    Michaud DS, Feskanich D, Rimm EB. Intake of specific carotenoids and risk of lung cancer in 2 prospective US cohorts. Am. J. Clin. Nutr. 72: 990–997 (2000)Google Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Biological and Geological Sciences Department, Faculty of EducationAin Shams UniversityCairoEgypt

Personalised recommendations