Skip to main content
Log in

Effects of medium high pressure treatments on protease activity

  • Research Note
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

When various protease solutions in dynamic ranges of activity-enzyme concentration profiles were treated at the medium high pressure of 100 and 300 MPa for 60, 120, and 300 min, characteristic changes in enzyme activity were found. The most conspicuous facts observed were the increase in the activity of trypsin with increasing pressurizing time and nearly complete inactivation of thermolysin at 300 MPa, which seemed to suggest that serine proteases hold better pressure tolerance compared with metallo-proteases. Electrophoretic analysis on wheat gluten hydrolyzates that were prepared by trypsin and thermolysin at ambient pressure and 300 MPa supported time-dependent changes in protease activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El Enshasy H, Abuoul-Enein A, Helmy S, El Azaly Y. Optimization of the industrial production of alkaline protease by Bacillus licheniformis in different production scales. Aust. J. Basic Appl. Sci. 2: 583–589 (2008)

    Google Scholar 

  2. Kumar CG, Takagi H. Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnol. Adv. 17: 561–594 (1999)

    Article  CAS  Google Scholar 

  3. Dayanandan A, Kanagaraj J, Sounderraj L, Govindaraju R, Rajkumar GS. Application of an alkaline protease in leather processing: An ecofriendly approach. J. Clean Prod. 11: 533–536 (2003)

    Article  Google Scholar 

  4. Gusek TW, Kinsella JE. Purification and characterization of the heat-stable serine proteinase from Thermomonospora fusca YX. Biochem. J. 246: 511–517 (1987)

    CAS  Google Scholar 

  5. Sugiura M, Suzuki M, Ishikawa M, Sasaki M. Pharmaceutical studies on aminopeptidase from Aspergillus japonica. Chem. Pharm. Bull. 24: 2286–2293 (1976)

    Article  CAS  Google Scholar 

  6. Balny C. What lies in the future of high pressure bioscience? Biochim. Biophys. Acta 1764: 632–639 (2006)

    Article  CAS  Google Scholar 

  7. Heremans K, Smeller L. Protein structure and dynamics at high pressure. Biochim. Biophys. Acta 1386: 353–370 (1998)

    Article  CAS  Google Scholar 

  8. Vila Real HJ, Alfaia AJ, Calado ART, Ribeiro MHL. High pressuretemperature effects on enzymatic activity: Naringin bioconversion. Food Chem. 102: 565–570 (2007)

    Article  CAS  Google Scholar 

  9. Hendrickx M, Ludikhuyze L, Van der Broeck I, Weemaes C. Effects of high pressure on enzymes related to food quality. Trends Food Sci. Tech. 9: 197–203 (1998)

    Article  CAS  Google Scholar 

  10. Nguyen BL, Van Loey A, Fachin D, Verlent I, Hendrickx IM. Purification, characterization, thermal and high pressure inactivation of pectin methylesterase from bananas (cv Cavendish). Biotechnol. Bioeng. 78: 683–691 (2002)

    Article  CAS  Google Scholar 

  11. Seyderhelin I, Boguslawsky S, Michadis G, Knorr D. Pressure induced inactivation of selected food enzymes. J. Food Sci. 61: 308–310 (1996)

    Article  Google Scholar 

  12. Katsaros GI, Katapodis P, Taoukis PS. High hydrostatic pressure inactivation kinetics of the plant proteases ficin and papain. J. Food Eng. 91: 42–48 (2009)

    Article  CAS  Google Scholar 

  13. Borda D, Indrawati, Smout C, Van Loey A, Hendrickx M. High pressure thermal inactivation of a plasmin system. J. Dairy Sci. 87: 2351–2358 (2004)

    Article  CAS  Google Scholar 

  14. Curl L, Jansen EF. The effect of high pressure on pepsin and chymotrypsinogen. J. Biol. Chem. 185: 716–723 (1950)

    Google Scholar 

  15. Yaldagard M, Mortazavi SA, Tabatabaie F. The principles of ultra high pressure technology and its application in food processing/ preservation: A review of microbiological and quality aspects. Afr. J. Biotechnol. 7: 2739–2767 (2008)

    CAS  Google Scholar 

  16. Kim N, Maeng JS, Cho YJ, Kim CJ, Kim CT. Application of convenient chromogen-based assay to measurement of protease activity. Food Eng. Prog. 16: 193–198 (2012)

    Google Scholar 

  17. Knorr D. Novel approaches in food-processing technology: New technologies for preserving foods and modifying function. Food Biotechnol. 10: 485–491 (1999)

    CAS  Google Scholar 

  18. Saeki K. High pressure enzyme reactor (abstract no. D8-4). In: Abstracts: 2011 Annual Meeting of Korean Society of Food Science and Technology. June 8–10, EXCO, Daegu, Korea. The Korean Society of Food Science and Technology, Seoul, Korea (2011)

    Google Scholar 

  19. Marangoni AG. Characterization of enzyme activity. pp. 44–60. In: Enzyme Kinetics: A Modern Approach. John Wiley & Sons, Inc., Hoboken, NJ, USA (2003)

    Google Scholar 

  20. Buckow R, Heinz V, Knorr D. Effect of high hydrostatic pressuretemperature combinations on the activity of β-glucanase from barley malt. J. Inst. Brew. 111: 282–289 (2005)

    Article  Google Scholar 

  21. Saad-Nehme J, Silva JL, Meyer-Fernandes JR. Osmolytes protect mitochondrial F0F1-ATPase complex against pressure inactivation. Biochim. Biophys. Acta 1546: 164–170 (2001)

    Article  CAS  Google Scholar 

  22. Cioni P, Strambini GB. Pressure effects on protein flexibility monomeric proteins. J. Mol. Biol. 242: 291–301 (1994)

    Article  CAS  Google Scholar 

  23. Messens W, Van Camp J, Huyghebaert A. The use of high pressure to modify the functionality of food proteins. Trends Food Sci. Tech. 8: 107–112 (1997)

    Article  CAS  Google Scholar 

  24. Cheftel JC. Effects of high hydrostatic pressure on food constituents: An overview. Vol. 224, pp. 195–209. In: High Pressure and Biotechnology. Balny C, Hayashi R, Hermans K, Masson P (eds). Colloque INSERM, London, UK (1992)

    Google Scholar 

  25. Polgár L. The catalytic triad of serine peptidases. Cell. Mol. Life Sci. 62: 2161–2172 (2005)

    Article  Google Scholar 

  26. Mozhaev VV, Lange R, Kudryashova EV, Balny C. Application of high hydrostatic pressure for increasing activity and stability of enzymes. Biotechnol. Bioeng. 52: 320–331 (1996)

    Article  CAS  Google Scholar 

  27. Matthews BW. Structural basis of the action of thermolysin and related zinc peptidases. Accounts Chem. Res. 21: 333–340 (1988)

    Article  CAS  Google Scholar 

  28. Kim N. Purification and characterization of an extracellular proteinase from Serratia marcescens. PhD thesis, Seoul National University, Seoul, Korea (1992)

    Google Scholar 

  29. Reedijk J. Metal-ligand exchange kinetics in platinum and ruthenium complexes. Significance for effectiveness as anticancer drugs. Plat. Met. Rev. 52: 2–11 (2008)

    Article  CAS  Google Scholar 

  30. Balny C. Pressure effects on weak interactions in biological systems. J. Phys. -Condens. Mat. 16: S1245–S1254 (2004)

    Article  CAS  Google Scholar 

  31. Inouye K, Kuzuya K, Tonomura B. Effect of salts on the solubility of thermolysin: A remarkable increase in the solubility as well as the activity by the addition of salts without aggregation or dispersion of thermolysin. J. Biochem. 123: 847–852 (1998)

    Article  CAS  Google Scholar 

  32. Inouye K, Minoda M, Takita T, Sakurama H, Hashida Y, Kusano M, Yasukawa K. Extracellular production of recombinant thermolysin expressed in Escherichia coli, and its purification and enzymatic characterization. Protein Expres. Purif. 46: 248–255 (2006)

    Article  CAS  Google Scholar 

  33. Butz P, Tauscher B. Recent studies on pressure-induced chemical changes in food constituents. High Pressure Res. 19: 11–18 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namsoo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, N., Maeng, JS. & Kim, CT. Effects of medium high pressure treatments on protease activity. Food Sci Biotechnol 22 (Suppl 1), 289–294 (2013). https://doi.org/10.1007/s10068-013-0079-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0079-8

Keywords

Navigation