Skip to main content
Log in

Effects of orally administered fingerroot (Boesenbergia pandurata) extract on oxazolone-induced atopic dermatitis-like skin lesions in hairless mice

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Fingerroot [Boesenbergia pandurata (Roxb.) Schltr.], belonging to Zingiberaceae, is traditionally used as a spice and for medicinal purposes. In this study, the effects of ethanol extracts of fingerroot on atopic dermatitis (AD) were investigated using hairless mice treated with oxazolone. Oral administration of fingerroot extract (BPE) attenuated dermatitis associated with barrier damage as determined by transepidermal water loss, erythema, and filaggrin expression. Furthermore, infiltration of inflammatory cells and epidermal thickness in the skin was markedly decreased with BPE. BPE significantly decreased serum immunoglobulin (Ig) E and interleukin (IL)-4 levels, but increased IgG2a and interferon (IF)-γ levels. In addition, BPE decreased cytokines and chemokines associated with T helper type 1 (Th1) and type 2 (Th2) cells, and inflammation-associated molecules in the skin. BPE also decreased Th2-associated molecules and increased Th1/regulatory T cell-associated molecules in the spleen. These results suggest that BPE could be a useful functional ingredient in AD treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boguniewicz M, Leung DY. Atopic dermatitis: A disease of altered skin barrier and immune dysregulation. Immunol. Rev. 242: 233–246 (2011)

    Article  CAS  Google Scholar 

  2. Niebuhr M, Werfel T. Innate immunity, allergy, and atopic dermatitis. Curr. Opin. Allergy Cl. Immunol. 10: 463–468 (2010)

    Article  CAS  Google Scholar 

  3. Barnes PJ. Role of GATA-3 in allergic diseases. Curr. Mol. Med. 8: 330–334 (2008)

    Article  CAS  Google Scholar 

  4. Zheng T, Yu J, Oh MH, Zhu Z. The atopic march: Progression from atopic dermatitis to allergic rhinitis and asthma. Allergy Asthma Immunol. Res. 3: 67–73 (2011)

    Article  Google Scholar 

  5. De-Benedetto A, Kubo A, Beck LA. Skin barrier disruption: A requirement for allergen sensitization? J. Invest. Dermatol. 132: 949–963 (2012)

    Article  CAS  Google Scholar 

  6. Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, DeBenedetto A, Schneider L, Beck LA, Barnes KC, Leung DY. Cytokine modulation of atopic dermatitis filaggrin skin expression. J. Allergy Clin. Immun. 124: R7–R12 (2009)

    Article  CAS  Google Scholar 

  7. Kubo A, Nagao K, Amagai M. Epidermal barrier dysfunction and cutaneous sensitization in atopic diseases. J. Clin. Invest. 122: 440–447 (2012)

    Article  CAS  Google Scholar 

  8. Szegedi A, Baráth S, Nagy G, Szodoray P, Gál M, Sipka S, Bagdi E, Banham AH, Krenács L. Regulatory T cells in atopic dermatitis: Epidermal dendritic cell clusters may contribute to their local expansion. Brit. J. Dermatol. 160: 984–993 (2009)

    Article  CAS  Google Scholar 

  9. Gloire G, Legrand-Poels S, Piette J. NF-κB activation by reactive oxygen species: Fifteen years later. Biochem. Pharmacol. 72: 1493–1505 (2006)

    Article  CAS  Google Scholar 

  10. Aiba S, Manome H, Yoshino Y, Tagami H. Alteration in the production of IL-10 and IL-12 and aberrant expression of CD23, CD83, and CD86 by monocytes or monocyte-derived dendritic cells from atopic dermatitis patients. Exp. Dermatol. 12: 86–95 (2003)

    Article  CAS  Google Scholar 

  11. Trakoontivakorn G, Nakahara K, Shinmoto H, Takenaka M, Onishi-Kameyama M, Ono H. Structural analysis of a novel antimutagenic compound, 4-hydroxypanduratin A, and the antimutagenic activity of flavonoids in a Thai spice, fingerroot (Boesenbergia pandurata Schult.) against mutagenic heterocyclic amines. J. Agr. Food Chem. 49: 3046–3050 (2001)

    Article  CAS  Google Scholar 

  12. Mahidol C, Tantiwachwuttikul P, Reutrakul V, Taylor WC. Constituents of Boesenbergia pandurata (syn. Kaempferia pandurata) III Isolation and synthesis of (+)-boesenbergin B. Aust. J. Chem. 37: 1739–1745 (1984)

    Article  CAS  Google Scholar 

  13. Choi YR. Inhibitory effects of Boesenbergia pandurata Roxb. and its active compound panduratin a on allergy-related mediator production in rat basophilic leukemia mast cells. MS thesis, Yonsei University, Seoul, Korea (2011)

    Google Scholar 

  14. Kim DY, Kim MS, Sa BK, Kim MB, Hwang JK. Boesenbergia pandurata attenuates diet-induced obesity by activating AMPactivated protein kinase and regulating lipid metabolism. Int. J. Mol. Sci. 13: 994–1005 (2012)

    Article  CAS  Google Scholar 

  15. Shim JS, Kwon YY, Hwang JK. The effects of panduratin A isolated from Kaempferia pandurata Roxb. on the expression of matrix metalloproteinase-1 and type-1 procollagen in human skin fibroblasts. Planta Med. 74: 239–244 (2008)

    Article  CAS  Google Scholar 

  16. Park EJ, Park KC, Eo H, Seo J, Son M, Kim KH, Chang YS, Cho SH, Min KU, Jin M, Kim S. Suppression of spontaneous dermatitis in NC/Nga murine model by PG102 isolated from Actinidia arguta. J. Invest. Dermatol. 127: 1154–1160 (2007)

    Article  CAS  Google Scholar 

  17. Rautajoki KJ, Kylaniemi MK, Raghav SK, Rao K, Lahesmaa R. An insight into molecular mechanisms of human T helper cell differentiation. Ann. Med. 40: 322–335 (2008)

    Article  CAS  Google Scholar 

  18. Wegmann M. Th2 cells as targets for therapeutic intervention in allergic bronchial asthma. Expert Rev. Mol. Diagn. 9: 85–100 (2009)

    Article  CAS  Google Scholar 

  19. Takatsu K, Nakajima H. IL-5 and eosinophilia. Curr. Opin. Immunol. 20: 288–294 (2008)

    Article  CAS  Google Scholar 

  20. Ezzat MH, Hasan ZE, Shaheen KY. Serum measurement of interleukin-31 (IL-31) in paediatric atopic dermatitis: Elevated levels correlate with severity scoring. J. Eur. Acad. Dermatol. Venereol. 25: 334–339 (2011)

    Article  CAS  Google Scholar 

  21. Homey B, Meller S, Savinko T, Alenius H, Lauerma A. Modulation of chemokines by staphylococcal superantigen in atopic dermatitis. Chem. Immunol. Allergy 93: 181–194 (2007)

    Article  CAS  Google Scholar 

  22. Pickard C, Smith AM, Cooper H, Strickland I, Jackson J, Healy E, Friedmann PS. Investigation of mechanisms underlying the T-cell response to the hapten 2,4-dinitrochlorobenzene. J. Invest. Dermatol. 127: 630–637 (2007)

    Article  CAS  Google Scholar 

  23. Sumiyoshi K, Nakao A, Ushio H, Mitsuishi K, Okumura K, Tsuboi R, Ra C, Ogawa H. Transforming growth factor-β1 suppresses atopic dermatitis-like skin lesions in NC/Nga mice. Clin. Exp. Allergy 32: 309–314 (2002)

    Article  CAS  Google Scholar 

  24. Akdis CA, Akdis M. Mechanisms of allergen-specific immunotherapy. J. Allergy Clin. Immun. 127: 18–27 (2011)

    Article  CAS  Google Scholar 

  25. Homey B, Steinhoff M, Ruzicka T, Leung DY. Cytokines and chemokines orchestrate atopic skin inflammation. J. Allergy Clin. Immun. 118: 178–189 (2006)

    Article  CAS  Google Scholar 

  26. Yanti, Anggakusuma, Gwon SH, Hwang JK. Kaempferia pandurata Roxb. inhibits Porphyromonas gingivalis supernatant-induced matrix metalloproteinase-9 expression via signal transduction in human oral epidermoid cells. J. Ethnopharmacol. 123: 315–324 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Kwan Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, MS., Pyun, HB. & Hwang, JK. Effects of orally administered fingerroot (Boesenbergia pandurata) extract on oxazolone-induced atopic dermatitis-like skin lesions in hairless mice. Food Sci Biotechnol 22 (Suppl 1), 257–264 (2013). https://doi.org/10.1007/s10068-013-0075-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0075-z

Keywords

Navigation