Skip to main content
Log in

Effect of antioxidant activity of mixture obtained from brown seaweed and wheat germ oils using different extraction methods

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Brown seaweeds have a low lipid content compared with wheat germ, thus being a low source of nutritional energy. Nevertheless, it is worth mentioning that the lipid fraction might contain higher levels of essential polyunsaturated fatty acids compared with wheat germ, which might be of interest if we consider the brown seaweeds. Thus, when mixing the brown seaweed and wheat germ oil can make new oils contained a variety of fatty acids, polyphenols, tocopherols, and fucoxanthin for antioxidant activity. Combination of brown seaweed and wheat germ was progressed two ways. One way was mixing the powder samples before the extraction, and another way was mixing the oil samples after extraction. Brown seaweed oil mixed wheat germ oil after SC-CO2 at 40°C and 300–400 bar and hexane extraction showed higher antioxidant activity than the oil extracted from mixture of brown seaweed and wheat germ powder in all experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ratnam DV, Ankola DD, Bhardwaj V, Sahana DK, Kumar RMNV. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J. Control Release 113: 189–207 (2006)

    Article  CAS  Google Scholar 

  2. Perez-Jimenez J, Arranz S, Tabernero M, Diaz-Fubio ME, Serrano J, Goni I. Updated methodology to determine antioxidant capacity I plant foods, oils, and beverages: Extraction, measurement, and expression of results. Food Res. Int. 41: 274–285 (2008)

    Article  CAS  Google Scholar 

  3. Chapman VJ, Chapman DJ. Seaweeds and Their Ues. 3rd ed. Chapman & Hall, New York, NY, USA. pp. 25–42 (1980)

    Book  Google Scholar 

  4. Hosokawa M, Kudo M, Maeda H, Kohno H, Tanaka T, Miyashita K. Fucoxanthin induces apoptosis and enhances the antiproliferative effect of the PPARα ligand, trogitazone, on colon cancer cells. Biochem. Biophys. Acta 1675: 113–119 (2004)

    CAS  Google Scholar 

  5. Kohno H, Suzuki R, Yasui Y, Hosokawa M, Miyashita K, Tanaka T. Pomegranate seed oil rich in conjugated linolenic acid suppresses chemically induced colon carcinogenesis in rats. Cancer Sci. 95: 481–486 (2004)

    Article  CAS  Google Scholar 

  6. NAL, National Agricultural Library, U.S. Department of Agriculture. Available from: http://www.nal.Usda.gov/fnic/foodcomp/cgi-bin/list_nut_diet.pl. Accessed Aug. 10, 2012.

  7. Alabaster O, Tang Z, Shivapurkar N. Inhibition by wheat bran cereals of the development of aberrant crypt foci and colon tumours. Food Chem. Toxicol. 35: 517–522 (1997)

    Article  CAS  Google Scholar 

  8. Moller ME, Dahl R, Bockman OC. A possible role of the dietary fibre product, wheat bran, as a nitirite scavenger. Food Chem. Toxicol. 26: 841–845 (1988)

    Article  CAS  Google Scholar 

  9. Halliwell B. Antioxidants in human health and diseases. Annu. Rev. Nutr. 16: 33–50 (1992)

    Article  Google Scholar 

  10. Truswell AS. Cereal grains and coronary heart disease. Eur. J. Clin. Nutr. 56: 1–14 (2003)

    Article  Google Scholar 

  11. Sun M, Temelli F. Supercritical carbon dioxide extractions of carotenoids from carrot using canola oil as a continuous co-solvent. J. Supercrit. Fluid. 37: 397–408 (2006)

    Article  CAS  Google Scholar 

  12. Mendes RL, Nobre BP, Cardoso MT, Pereire AP, Palavre AF. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. J. Inorg. Chim. Acta 356: 328–334 (2003)

    Article  CAS  Google Scholar 

  13. Ge Y, Ni Y, Chen Y, Cai T. Optimization of the supercritical fluid extraction of natural vitamin E from wheat germ using response surface methodology. J. Food Sci. 67: 239–243 (2002)

    Article  CAS  Google Scholar 

  14. Eisenbach W. Supercritical fluid extraction: A film demonstration Ber. Bunsenges. Phys. Chem. 88: 882–887 (1984)

    CAS  Google Scholar 

  15. Rizvi SSH, Chao RR, Liaw YJ. In Supercritical Fluid Extraction and Chromatography: Techniques and Applications. ACS, Washington, DC, USA. pp. 366–389 (1998)

    Google Scholar 

  16. Temelli F, Leblanc E, Fu L. Supercritical carbon dioxide extraction of oil from Atlantic mackerel (Scomber scombrus) and protein functionality. J. Food. Sci. 60: 703–706 (1995)

    Article  CAS  Google Scholar 

  17. Perretti G, Miniati E, Montanari L, Fantozzi P. Improving the value of rice byproducts by SFE. J. Supercrit. Fluid. 26: 63–71 (2003)

    Article  CAS  Google Scholar 

  18. Li HB, Wong CC, Cheng KW, Chen F. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT-Food Sci. Technol. 41: 385–390 (2008)

    Article  CAS  Google Scholar 

  19. Wong SP, Leong LP, Koh JHW. Antioxidant activities of aqueous extracts of selected plants. Food Chem. 99: 775–783 (2006)

    Article  CAS  Google Scholar 

  20. Sachindra NM, Airanthi MKWA, Hosokawa M, Miyashita K. Radical scavenging and singlet oxygen quenching activity of extracts from Indian seaweeds. J. Food Sci. Technol. 47: 94–99 (2010)

    Article  CAS  Google Scholar 

  21. Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K. Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCO1 expression in white adipose tissues. Biochem. Bioph. Res. Co. 332: 392–397 (2005)

    Article  CAS  Google Scholar 

  22. Shimada K, Fujidawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the autooxidation of soybean oil in cyclodextrin. J. Agr. Food Chem. 40: 945–948 (1992)

    Article  CAS  Google Scholar 

  23. Chew KK, Khoo MZ, Ng SY, Thoo YY, Wan Aida WM, Ho CW. Effect of ethanol concentration, extraction time, and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of Orthosiphon stamineus extracts. Food Res. Int. 18: 1427–1435 (2011)

    CAS  Google Scholar 

  24. Salim Uddin MD. Recovery of bioactive and valued materials from squid (Todarodes pacificus) viscera using sub- and supercritical Fluids. PhD thesis, Pukyoug National University, Busan, Korea (2011)

    Google Scholar 

  25. Herbreteau F, Coiffard LJM, Derrien A, De Roeck-Holtzhauer Y. The fatty acid composition of five species of macroalgae. Bot. Mar. 40: 25–27 (1997)

    Article  CAS  Google Scholar 

  26. Khotimchenko SV, Vaskovsky VE, Titlyanova TV. Fatty acids of marine algae from the Pacific coast of north California. Bot. Mar. 45: 17–22 (2002)

    Article  CAS  Google Scholar 

  27. Jung GW. Study on antioxidant activity of wheat bran oil extracted by supercritical carbon dioxide. MS thesis, Pukyoug National University. Busan, Korea (2011)

    Google Scholar 

  28. Irakossyan A, Seymour E, Kaufman OB, Warber S, Bolling S, Chang SC. Antioxidant capacity of polyphenolic extracts from leaves of Crataegus laevigata and Crataegus monogyna (Hawthorn) subjected to drought and cold stress. J. Agr. Food Chem. 51: 3973–3976 (2003)

    Article  Google Scholar 

  29. Nilufer Gelmez N, Kincal S, Esra Yener M. Optimization of supercritical carbon dioxide extraction of antioxidants from roasted wheat germ based on yield, total phenolic, and tocopherol contents, and antioxidant activities of the extracts. J. Supercrit. Fluid. 48: 217–224 (2009)

    Article  Google Scholar 

  30. Eisenmenger M, Dunford NT, Eller F, Taylor S, Martinez J. Pilotscale supercritical carbon dioxide extractionand fractionation of wheat germ oil. J. Am. Oil Chem. Soc. 83: 863–868 (2006)

    Article  CAS  Google Scholar 

  31. Eisenmenger M, Dunford NT. Bioactive components of commercial and supercritical carbon dioxide processed wheat germ oil. J. Am. Oil Chem. Soc. 85: 55–61 (2008)

    Article  CAS  Google Scholar 

  32. Gomez AM, de la Ossa EM. Quality of wheat germ oil extracted by liquid and supercritical carbon dioxide. J. Am. Oil Chem. Soc. 77: 969–974 (2000)

    Article  CAS  Google Scholar 

  33. GE Y, Yan H, Hui B, Ni Y, Wang S, Cai T. Extraction of natural vitamin E from wheat germ by supercritical carbon dioxide. J. Agr. Food Chem. 50: 685–689 (2002)

    Article  CAS  Google Scholar 

  34. GE Y, Ni Y, Yan H, Chen Y, Cai T. Optimization of the supercritical fluid extraction of natural vitamin E from wheat germ suing response surface methodology. J. Food Sci. 67: 239–243 (2002)

    Article  CAS  Google Scholar 

  35. Widjaja-Adhi Airanthi MK, Hosokawa M, Miyashita K. Comparative antioxidant activity of edible Japanese brown seaweeds. J. Food Sci. 76: C104–C111 (2011)

    Article  Google Scholar 

  36. Jung GW, Kang HM, Chun BS. Characterization of wheat bran oil obtained by supercritical carbon dioxide and hexane extraction. J. Ind. Eng. Chem. 18: 360–363 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Soo Chun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JH., Chun, BS. Effect of antioxidant activity of mixture obtained from brown seaweed and wheat germ oils using different extraction methods. Food Sci Biotechnol 22 (Suppl 1), 9–17 (2013). https://doi.org/10.1007/s10068-013-0042-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0042-8

Keywords

Navigation