Advertisement

Food Science and Biotechnology

, Volume 22, Issue 1, pp 215–223 | Cite as

Antioxidant and anti-inflammatory activities of different solvent fractions from ethanol extract of Synurus deltoides (Aiton) Nakai leaves

  • Yunyao Jiang
  • Weicheng Hu
  • Kyeong-Cheol Lee
  • Myeong-Hyeon Wang
Research Article

Abstract

Fractions of Synurus deltoides (Aiton) Nakai leaves showed excellent antioxidant and anti-inflammatory effects in a series of antioxidant and anti-inflammatory assays including total phenolic and flavonoid contents determination assay, DPPH free radical scavenging assay, reducing power assay, superoxide radical scavenging assay, nitrite scavenging assay, total antioxidant assay, DNA damage protection assay, MTT assay, nitric oxide (NO) production inhibition assay, and reverse transcription (RT)-PCR assay. The ethyl acetate fraction exhibited stronger antioxidant effects than other fractions in most of antioxidant assays such as DPPH assay, reducing power assay, superoxide radical scavenging assay, and nitrite scavenging assay. However, the dichloromethane fraction showed the strongest total antioxidant activity and NO production inhibitory activity. It was demonstrated that S. deltoides was valuable to be researched farther and application and fractions of S. deltoides had great potential to be a source of edible antioxidant and anti-inflammatory agents.

Keywords

anti-inflammatory antioxidant cytotoxicity DNA damage protection phenolic content 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bursal E, Gülçin İ. Polyphenol contents and in vitro antioxidant activities of lyophilised aqueous extract of kiwifruit (Actinidia deliciosa). Food Res. Int. 44: 1482–1489 (2011)CrossRefGoogle Scholar
  2. 2.
    Wang S, Melnyk JP, Tsao R, Marcone MF. How natural dietary antioxidants in fruits, vegetables, and legumes promote vascular health. Food Res. Int. 44: 14–22 (2011)CrossRefGoogle Scholar
  3. 3.
    Marathe SA, Rajalakshmi V, Jamdar SN, Shama A. Comparative study on antioxidant activity of different varieties of commonly consumed legumes in India. Food Chem. Toxicol. 49: 2005–2012 (2011)CrossRefGoogle Scholar
  4. 4.
    Hayes JE, Allen P, Brunton N, O’Grady MN, Kerry JP. Phenolic composition and in vitro antioxidant capacity of four commercial phytochemical products: Olive leaf extract (Olea europaea L.), lutein, sesamol, and ellagic acid. Food Chem. 126: 948–955 (2011)CrossRefGoogle Scholar
  5. 5.
    Pérez-Tortosa V, López-Orenes A, Martínez-Pérez A, Ferrer MA, Galderón AA. Antioxidant activity and rosmarinic acid changes in salicylic acid-treated Thymus membranaceus shoots. Food Chem. 130: 362–369 (2012)CrossRefGoogle Scholar
  6. 6.
    Bauer J, Koeberle A, Dehm F, Pollastro F, Appendino G, Northoff H, Rossi A, Sautebin L, Werz O. Arzanol, a prenylated heterodimeric phloroglucinyl pyrone, inhibits eicosanoid biosynthesis, and exhibits anti-inflammatory efficacy in vivo. Biochem. Pharmacol. 81: 259–268 (2011)CrossRefGoogle Scholar
  7. 7.
    Conforti F, Sosa S, Marrelli M, Menichini F, Statti GA, Uzunov D, Tubaro A, Menichini F, Loggia RD. In vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants. J. Ethnopharmacol. 116: 144–151 (2008)CrossRefGoogle Scholar
  8. 8.
    Choi HJ, Eun JS, Park YR, Kim DK, Li R, Moon WS, Park JM, Kim HS, Cho NP, Cho SD, Soh Y. Ikarisoside a inhibits inducible nitric oxide synthase in lipopolysaccharide-stimulated RAW 264.7 cells via p38 kinase and nuclear factor-κB signaling pathways. Eur. J. Pharmacol. 601: 171–178 (2008)CrossRefGoogle Scholar
  9. 9.
    Lin MW, Tsao LT, Huang LJ, Kuo SC, Weng JR, Ko HH, Lin CN, Lee MR, Wang JP. Inhibition of lipopolysaccharide-stimulated NO production by crotafuran B in RAW 264.7 macrophages involves the blockade of NF-κB activation through the increase in IκBα synthesis. Toxicol. Appl. Pharm. 210: 108–115 (2006)CrossRefGoogle Scholar
  10. 10.
    Lin MW, Tsao LT, Chang LC, Chen YL, Huang LJ, Kuo SC, Tzeng CC, Lee MR, Wang JP. Inhibition of lipopolysaccharide-stimulated NO production by a novel synthetic compound CYL-4d in RAW 264.7 macrophages involving the blockade of MEK4/JNK/AP-1 pathway. Biochem. Pharmacol. 73: 1796–1806 (2007)CrossRefGoogle Scholar
  11. 11.
    Lai CS, Lai YS, Kuo DH, Wu CH, Ho CT, Pan MH. Magnolol potently suppressed lipopolysaccharide-induced iNOS and COX-2 expression via downregulating MAPK and NF-κB signaling pathways. J. Funct. Foods 3: 198–206 (2011)Google Scholar
  12. 12.
    Park JH, Son KH, Kim SW, Chang HW, Bae KH, Kang SS, Kim HP. Antiinflammatory activity of Synurus deltoides. Phytother. Res. 18: 930–933 (2004)CrossRefGoogle Scholar
  13. 13.
    Jung MJ, Heo S, Wang MH. Antioxidant activities of different parts of Synurus deltoides Nakai extracts in vitro. Food Sci. Biotechnol. 17: 1156–1159 (2008)Google Scholar
  14. 14.
    Liu J, Lin S, Wang Z, Wang C, Wang E, Zhang Y, Liu J. Supercritical fluid extraction of flavonoids from Maydis stigma and its nitrite-scavenging ability. Food Bioprod. Process. 89: 333–339 (2011)CrossRefGoogle Scholar
  15. 15.
    Singh N, Rajini PS. Free radical scavenging activity of an aqueous extract of potato peel. Food Chem. 85: 611–616 (2004)CrossRefGoogle Scholar
  16. 16.
    Yin J, Kwon GJ, Wang MH. The antioxidant and cytotoxic activities of Sonchus oleraceus L. extracts. Nutr. Res. Pract. 1: 189–194 (2007)CrossRefGoogle Scholar
  17. 17.
    Li C, Son HJ, Huang C, Lee SK, Lohakare J, Wang MH. Comparison of Crataegus pinnatifida Bunge var. typica Schneider and C. pinnatifida Bunge fruits for antioxidant, anti-α-glucosidase, and anti-inflammatory activities. Food Sci. Biotechnol. 19: 769–775 (2010)CrossRefGoogle Scholar
  18. 18.
    Liu H, Wang L, Wang MH. Antioxidant and nitric oxide release inhibition activities of methanolic extract from Clerodendrum cyrtophyllum Turcz. Hort. Environ. Biotechnol. 52: 1–6 (2011)CrossRefGoogle Scholar
  19. 19.
    Hossain MA, Rahman SMM. Total phenolics, flavonoids, and antioxidant activity of tropical fruit pineapple. Food Res. Int. 44: 672–676 (2011)CrossRefGoogle Scholar
  20. 20.
    Kunyanga CN, Imungi JK, Okoth MW, Biesalski HK, Vadivel V. Total phenolic content, antioxidant, and antidiabetic properties of methanolic extract of raw and traditionally processed Kenyan indigenous food ingredients. LWT-Food Sci. Technol. 45: 269–276 (2012)CrossRefGoogle Scholar
  21. 21.
    Zhang J, Yue L, Hayat K, Xia S, Zhang X, Ding B, Tong J, Chen Z. Purification of flavonoid from Gingko biloba extract by zinc complexation method and its effect on antioxidant activity. Sep. Purif. Technol. 71: 273–278 (2010)CrossRefGoogle Scholar
  22. 22.
    Noipa T, Srijaranai S, Tuntulani T, Ngeontae W. New approach for evaluation of the antioxidant capacity based on scavenging DPPH free radical in micelle systems. Food Res. Int. 44: 798–806 (2011)CrossRefGoogle Scholar
  23. 23.
    Firuzi O, Lacanna A, Petrucci R, Marrosu G, Saso L. Evaluation of the antioxidant activity of flavonoids by ferric reducing antioxidant power assay and cyclic voltammetry. Biochim. Biophys. Acta 1721: 174–184 (2005)CrossRefGoogle Scholar
  24. 24.
    Toyo’oka T, Kashiwazaki T, Kato M. On-line screening methods for antioxidants scavenging superoxide anion radical and hydrogen peroxide by liquid chromatography with indirect chemiluminescence detection. Talanta 60: 467–575 (2003)CrossRefGoogle Scholar
  25. 25.
    Serpen A, Gökmen V, Pellegrini N, Fogliano V. Direct measurement of the total antioxiant capacity of cereal products. J. Cereal Sci. 48: 816–820 (2008)CrossRefGoogle Scholar
  26. 26.
    Guo S, Deng Q, Xiao J, Xie B, Sun Z. Evaluation of antioxidant activity and preventing DNA damage effect of pomegranate extracts by chemiluminescence method. J. Agr. Food Chem. 55: 3134–3140 (2007)CrossRefGoogle Scholar
  27. 27.
    Watters JL, Satia JA, Kupper LL, Swenberg JA, Schroeder JC, Switzer BR. Associations of antioxidant nutrients and oxidative DNA damage in healthy African-american and white adults. Cancer Epidem. Biomar. 16: 1428–1436 (2007)CrossRefGoogle Scholar
  28. 28.
    Scheel J, Weimans S, Thiemann A, Heisler E, Hermann M. Exposure of the murine RAW 264.7 macrophage cell line to hydroxyapatite dispersions of various composition and morphology: Assessment of cytotoxicity, activation, and stress response. Toxicol. In Vitro 23: 531–538 (2009)CrossRefGoogle Scholar
  29. 29.
    Schmidt N, Pautz A, Art J, Rauschkolb P, Jung M, Erkel G, Goldring BG, Kleinert H. Transcriptional and post-transcriptional regulation of iNOS expression in human chondrocytes. Biochem. Pharmacol. 79: 722–732 (2010)CrossRefGoogle Scholar
  30. 30.
    Tong X, Yin L, Giardina C. Butyrate suppresses Cox-2 activation in colon cancer cells through HDAC inhibition. Biochem. Bioph. Res. Co. 317: 463–471 (2004)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Yunyao Jiang
    • 1
  • Weicheng Hu
    • 1
  • Kyeong-Cheol Lee
    • 2
  • Myeong-Hyeon Wang
    • 1
  1. 1.Department of Medical Biotechnology, College of Biomedical ScienceKangwon National UniversityChuncheon, GangwonKorea
  2. 2.Division of Forest Resources, College of Forest and Environmental SciencesKangwon National UniversityChuncheon, GangwonKorea

Personalised recommendations