Food Science and Biotechnology

, Volume 21, Issue 6, pp 1647–1654 | Cite as

Statistical modeling and optimization for exopolysaccharide production by Lactobacillus confusus in submerged fermentation under high salinity stress

Research Article

Abstract

In the last two decades, many studies have been reported that a high concentration of NaCl suppresses exopolysaccharide (EPS) production in lactic acid bacteria. In the present study, however, the enhancement of EPS production by Lactobacillus confusus under high salinity stress in submerged fermentation was demonstrated using response surface methodology via a full factorial design. Under the optimized conditions of 3.33% NaCl, 20 g/L sucrose, and 35 h of incubation, the EPS yield was 10.87 g/ L with 178% higher than the maximum yield (6.12 g/L of EPS) produced from the modified MRS medium without NaCl. Biomass production was independent of EPS production. A high yield of biomass was obtained in the culture with 0.23% NaCl. This results indicate that high salinity stress by NaCl can enhance EPS production in submerged fermentation in uncontrolled pH cultivations by inducing the production of cell-associated dextransucrase.

Keywords

submerged fermentation exopolysaccharide (EPS) Lactobacillus confusus NaCl high salinity stress cell-associated dextransucrase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    De Vuyst L, Degeest B. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23: 153–177 (1999)CrossRefGoogle Scholar
  2. 2.
    De Vuyst L, De Vin F, Vaningelgem F, Degeest B. Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int. Dairy J. 11: 687–707 (2001)CrossRefGoogle Scholar
  3. 3.
    Malik A, Radji M, Kralj S, Dijkhuizen L. Screening of lactic acid bacteria from Indonesia reveals glucansucrase and fructansucrase genes in two different Weissella confusa strains from soya. FEMS Microbiol. Lett. 300: 131–138 (2009)CrossRefGoogle Scholar
  4. 4.
    Svensson M, Waak E, Svensson U, Radstrom P. Metabolically improved exopolysaccharide production by Streptococcus thermophilus and its influence on the rheological properties of fermented milk. Appl. Environ. Microb. 71: 6398–6400 (2005)CrossRefGoogle Scholar
  5. 5.
    Boels IC, van Kranenburg R, Kanning MW, Chong BF, de Vos WM, Kleerebezem M. Increased exopolysaccharide production in Lactococcus lactis due to increased levels of expression of the NIZO B40 eps gene cluster. Appl. Environ. Microb. 69: 5029–5031 (2003)CrossRefGoogle Scholar
  6. 6.
    Jolly L, Vincent SJ, Duboc P, Neeser JR. Exploiting expolysaccharides from lactic acid bacteria. Anton. Leeuw. Int. J. G. 82: 367–374 (2002)CrossRefGoogle Scholar
  7. 7.
    Looijesteijn PJ, Hugenholtz J. Uncoupling of growth and exopolysaccharide production by Lactococcus lactis subsp. cremoris NIZO B40 and optimization of its synthesis. J. Biosci. Bioeng. 88: 178–182 (1999)CrossRefGoogle Scholar
  8. 8.
    Looijesteijn PJ, Trapet L, de Vries E, Abee T, Hugenholtz J. Physiological function of exopolysaccharides produced by Lactococcus lactis. Int. J. Food Microbiol. 64: 71–80 (2001)CrossRefGoogle Scholar
  9. 9.
    Torino MI, Hebert EM, Mozzi F, Font de Valdez G. Growth and exopolysaccharide production by Lactobacillus helveticus ATCC 15807 in an adenine-supplemented chemically defined medium. J. Appl. Microbiol. 99: 1123–1129 (2005)CrossRefGoogle Scholar
  10. 10.
    Velasco S, Arskold E, Paese M, Grage H, Irastorza A, Radstrom P, van Niel EW. Environmental factors influencing growth of and exopolysaccharide formation by Pediococcus parvulus 2.6. Int. J. Food. Microbiol. 111: 252–258 (2006)CrossRefGoogle Scholar
  11. 11.
    Maina NH, Tenkanen M, Maaheimo H, Juvonen R, Virkki L. NMR spectroscopic analysis of exopolysaccharides produced by Leuconostoc citreum and Weissella confusa. Carbohyd. Res. 343: 1446–1455 (2008)CrossRefGoogle Scholar
  12. 12.
    Bounaix MS, Robert H, Gabriel V, Morel S, Remaud-Simeon M, Gabriel B, Fontagne-Faucher C. Characterization of dextranproducing Weissella strains isolated from sourdoughs and evidence of constitutive dextransucrase expression. FEMS Microbiol. Lett. 311: 18–26 (2010)CrossRefGoogle Scholar
  13. 13.
    Bounaix MS, Gabriel V, Morel S, Robert H, Rabier P, Remaud-Siméon M, Gabriel B, Fontagn-Faucher C. Biodiversity of exopolysaccharides produced from sucrose by sourdough lactic acid bacteria. J. Agr. Food Chem. 57: 10889–10897 (2009)CrossRefGoogle Scholar
  14. 14.
    Ahmed ZR, Siddiqui K, Arman M, Ahmed N. Characterization of high molecular weight dextran produced by Weissella cibaria CMGDEX3. Carbohyd. Res. 90: 441–446 (2012)Google Scholar
  15. 15.
    Kuntiya A, Hanmoungjai P, Techapun C, Sasaki K, Seesuriyachan P. Influence of pH, sucrose concentration, and agitation speed on exopolysaccharide production by Lactobacillus confusus TISTR 1498 using coconut water as a raw material substitute. Maejo Int. J. Sci. Tech. 4: 318–330 (2010)Google Scholar
  16. 16.
    Seesuriyachan P, Techapun C, Shinkawa H, Sasaki K. Solid state fermentation for extracellular polysaccharide production by Lactobacillus confusus with coconut water and sugar cane juice as renewable wastes. Biosci. Biotech. Bioch. 74: 423–426 (2010)CrossRefGoogle Scholar
  17. 17.
    Seesuriyachan P, Kuntiya A, Hanmoungjai P, Techapun C. Exopolysaccharide production by Lactobacillus confusus TISTR 1498 using coconut water as an alternative carbon source: The effect of peptone, yeast extract, and beef extract. Songklanakarin J. Sci. Technol. 33: 379–387 (2011)Google Scholar
  18. 18.
    Duenas M, Munduate A, Perea A, Irastorza A. Exopolysaccharide production by Pediococcus damnosus 2.6 in a semidefined medium under different growth conditions. Int. J. Food Microbiol. 87: 113–120 (2003)CrossRefGoogle Scholar
  19. 19.
    Seesuriyachan P, Kuntiya A, Hanmoungjai P, Techapun C, Chaiyaso T, Leksawasdi N. Optimization of exopolysaccharide overproduction by Lactobacillus confusus in solid state fermentation under high salinity stress. Biosci. Biotech. Bioch. 76: 912–917 (2012)CrossRefGoogle Scholar
  20. 20.
    Miller GL. Use of dinitrosalicilic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428 (1959)CrossRefGoogle Scholar
  21. 21.
    Kang YS, Park W. Protection against diesel oil toxicity by sodium chloride-induced exopolysaccharides in Acinetobacter sp. strain DR1. J. Biosci. Bioeng. 109: 118–123 (2010)CrossRefGoogle Scholar
  22. 22.
    Shaileshkumar DS, Lele SS. Statistical optimization of media for dextran production by Leuconostoc sp., isolated from fermented idli batter. Food. Sci. Biotechnol. 19: 471–478 (2010)CrossRefGoogle Scholar
  23. 23.
    Prasertsan P, Wichienchot S, Doelle H, Kennedy JF. Optimization for biopolymer production by Enterobacter cloacae WD7. Carbohyd. Res. 71: 468–475 (2008)Google Scholar
  24. 24.
    Dols M, Chraibi W, Remaud-Simeon M, Lindley ND, Monsan PF. Growth and energetics of Leuconostoc mesenteroides NRRL B-1299 during metabolism of various sugars and their consequences for dextransucrase production. Appl. Environ. Microb. 63: 2159–2165 (1997)Google Scholar
  25. 25.
    Cerning J. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev. 87: 113–130 (1990)CrossRefGoogle Scholar
  26. 26.
    van Geel-Schutten GH, Flesch F, Ten Brink B, Smith MR, Dijkhuizen L. Screening and characterization of Lactobacillus strains producing large amounts of exopolysaccharides. Appl. Microbiol. Biot. 50: 697–703 (1998)CrossRefGoogle Scholar
  27. 27.
    Cerning J. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev. 7: 113–130 (1990)Google Scholar
  28. 28.
    Shukla S, Goyal A. 16S rRNA-based identification of a glucanhyperproducing Weissella confusa. Enzyme Res. doi:10.4061/2011/250842 (2011)Google Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Division of Biotechnology, Faculty of Agro-IndustryChiang Mai UniversityChiang MaiThailand

Personalised recommendations