Characterization of subtilin KU43 Produced by Bacillus subtilis KU43 isolated from traditional Korean fermented foods

Abstract

An antimicrobial peptide produced by Bacillus subtilis KU25, KU43, and KU44 was isolated from traditional Korean fermented foods and characterized. It was named as subtilin KU25, KU43, and KU44. Subtilin KU25, KU43, and KU44 were sensitive against α-chymotrypsin, protease XIII, and various proteinase enzymes, respectively. B. subtilis KU43 was selected as the producer with the broadest antimicrobial spectrum. Subtilin KU43 was stable at a pH range of 3 to 9 for 4 h, and withstood exposure to temperatures of 50–90°C for 30 min. The mode of inhibition against Listeria monocytogenes ATCC 15313 involved a bactericidal effect by a reduction in the cell numbers and breakage of the indicator cell membranes. The molecular mass of subtilin KU43 was measured at approximately 3.5 kDa. These results demonstrate the development of novel strains from traditional Korean fermented foods, and illustrate the possibility that some of these strains might generate a natural preservative compound.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Cleveland J, Montville TJ, Nes IF, Chikindas ML. Bacteriocins: Safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71: 1–20 (2001)

    Article  CAS  Google Scholar 

  2. 2.

    de Vuyst L, Vandamme EJ. Lactic acid bacteria and bacteriocins: Their practical importance. pp. 1–11. In: Bacteriocins of Lactic Acid Bacteria. De Vuyst L, Vandamme EJ (eds). Blackie, Glasgow, UK (1994)

    Google Scholar 

  3. 3.

    Crandall AD, Montville TJ. Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Appl. Environ. Microb. 64: 231–237 (1998)

    CAS  Google Scholar 

  4. 4.

    Hyronimus B, Le Marrec C, Urdaci MC. Coagulin, a bacteriocinlike inhibitory substance produced by Bacillus coagulans 14. J. Appl. Microbiol. 85: 42–50 (1998)

    Article  CAS  Google Scholar 

  5. 5.

    Oscáriz JC, Pisbarro AG. Characterization and mechanism of action of cerein 7, a bacteriocin produced by Bacillus cereus Bc7. J. Appl. Microbiol. 89: 361–369 (2000)

    Article  Google Scholar 

  6. 6.

    Cladera-Olivera F, Caron GR, Brandelli A. Bacteriocin-like substance production by Bacillus licheniformis strain P40. Lett. Appl. Microbiol. 38: 251–256 (2004)

    Article  CAS  Google Scholar 

  7. 7.

    Tamehiro N, Okamoto-Hosoya Y, Okamoto S, Ubukata M, Hamada M, Naganawa H, Ochi K. Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168. Antimicrob. Agents Ch. 46: 315–320 (2002)

    Article  CAS  Google Scholar 

  8. 8.

    Stein T. Bacillus subtilis antibiotics: Structures, syntheses, and specific functions. Mol. Microbiol. 56: 845–857 (2005)

    Article  CAS  Google Scholar 

  9. 9.

    Park KY. The nutritional evaluation, and antimutagenic and effects of kimchi. J. Korean Soc. Food Nutr. 24: 169–182 (1995)

    CAS  Google Scholar 

  10. 10.

    Kwon MJ, Chun JH, Song YS, Song YO. Daily kimchi consumption and its hypolipidemic effect in middle-aged men. J. Korean Soc. Food Sci. Nutr. 28: 1144–1150 (1999)

    Google Scholar 

  11. 11.

    Lee HJ, Kim WJ. Isolation and characterization of anti-listerial and amylase sensitive enterocin producing Enterococcus faecium DB1 from gajami-sikhae, a fermented flat fish in Korea. Food Sci. Biotechnol. 19: 373–381 (2010)

    Article  CAS  Google Scholar 

  12. 12.

    Lee MS, Lee NK, Chang KH, Choi SY, Song CK, Paik H-D. Isolation and characterization of a protease-producing bacterium, Bacillus amyloliquefaciens P27 from meju as a probiotic starter for fermented meat products. Korean J. Food Sci. An. 30: 804–810 (2010)

    Article  Google Scholar 

  13. 13.

    Lee SG, Han KS, Jeong SG, Oh MH, Jang AR, Kim DH, Bae IH, Ham JS. A study on the sensory characteristic of yoghurt and antimicrobial activity of Lactobacillus plantarum LHC52 isolated from kimchi. Korean J. Food Sci. An. 30: 328–335 (2010)

    Article  Google Scholar 

  14. 14.

    Lim SM. Cultural conditions and nutritional components affecting the growth and bacteriocin production of Lactobacillus plantarum KC21. Food Sci. Biotechnol. 19: 793–802 (2010)

    Article  CAS  Google Scholar 

  15. 15.

    Yang EJ, Chang HC. Characterization of bacteriocin-like substances produced by Bacillus subtilis MJP1. Korean J. Microbiol. Biotechnol. 35: 339–346 (2007)

    CAS  Google Scholar 

  16. 16.

    Jack RW, Tagg JR, Ray B. Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59: 171–200 (1995)

    CAS  Google Scholar 

  17. 17.

    Bizani D, Morriss JAC, Dominguez APM, Brandelli A. Inhibition of Listeria monocytogenes in dairy products using the bacteriocinlike peptide cerein 8A. Int. J. Food Microbiol. 121: 229–233 (2008)

    Article  CAS  Google Scholar 

  18. 18.

    Lee KH, Jun KD, Kim WS, Paik H-D. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Lett. Appl. Microbiol. 32: 146–151 (2001)

    Article  CAS  Google Scholar 

  19. 19.

    Farber JM, Peterkin PI. Listeria monocytogens, a food-borne pathogen. Microbiol. Rev. 55: 476–511 (1991)

    CAS  Google Scholar 

  20. 20.

    Gandhi M, Chikindas ML. Listeria: A foodborne pathogen that knows how to survive. Int. J. Food Microbiol. 113: 1–15 (2007)

    Article  Google Scholar 

  21. 21.

    Mantovani HC, Russell JB. Inhibition of Listeria monocytogenes by bovicin HC5, a bacteriocin produced by Streptococcus bovis HC5. Int. J. Food Microbiol. 89: 77–83 (2003)

    Article  CAS  Google Scholar 

  22. 22.

    Vadyvaloo V, Hastings JW, van der Merwe MJ, Rautenbach M. Membranes of class IIa bacteriocin-resistant Listeria monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycrols. Appl. Environ. Microb. 6: 5223–5230 (2002)

    Article  Google Scholar 

  23. 23.

    Gravesen A, Kallipolitis B, Holmstrøm K, Høiby PE, Ramnath M, Knøchel S. pbp2229-mediated nisin resistant mechanism in Listeria monocytogenes confers cross-protection to class IIa bacteriocins and affects virulence gene expression. Appl. Environ. Microb. 70: 1669–1679 (2004)

    Article  CAS  Google Scholar 

  24. 24.

    Zhou K, Zhou W, Li P, Liu G, Zhang J, Dai Y. Mode of action of pentocin 31-1: An antilisteria bacteriocin produced by Lactobacillus pentosus from Chinese traditional ham. Food Control 19: 817–822 (2008)

    Article  CAS  Google Scholar 

  25. 25.

    Kemper MA, Urrotia MM, Beveridge TJ, Koch AL, Doyle RJ. Proton membrane injuries induced by lacticin F and nisin. Int. Microbiol. 5: 73–80 (1993)

    Google Scholar 

  26. 26.

    Kawulka KE, Sprules T, Diaper CM, Whittal RM, McKay RT, Mercier P, Zuber P, Vederas JC. Structure of subtilosin A, a cyclic antimicrobial peptide link: Formation and reduction of a α-thio-α-amino acid derivatives. Biochemistry-US 43: 3385–3395 (2004)

    Article  CAS  Google Scholar 

  27. 27.

    Lindstrom F, Williamson PTF, Gröbner G. Molecular insight into the electrostatic membrane surface potential by 14N/31P MAS NMR spectroscopy: Nociceptin-lipid association. J. Am. Chem. Soc. 127: 6610–6618 (2005)

    Article  Google Scholar 

  28. 28.

    Thennarasu S, Lee DK, Poon A, Kawulka KE, Vederas JC, Ramamoorthy A. Membranes permeabilization, orientation, and antimicrobial mechanism of subtilosin A. Chem. Phys. Lipids 137: 38–51 (2005)

    Article  CAS  Google Scholar 

  29. 29.

    Ramammorthy A, Thennarasu S, Lee DK, Tan A, Lee M. Solidstate NMR investigation of the membrane-disrupting mechanism of antimicrobial peptides MSI-78 and MSI-594 derives from magainin 2 and melittin. Biophys. J. 91: 206–216 (2006)

    Article  Google Scholar 

  30. 30.

    Ramammorthy A, Thennarasu S, Tan A, Lee DK, Clayberger C, Krensky AM. Cell selectivity correlates with membrane-specific interactions: A case study on the antimicrobial peptide G15 derived from granulysin. BBA-Rev. Biomembranes 1758: 154–163 (2006)

    Article  Google Scholar 

  31. 31.

    Kanmoun F, Mejdoub H, Aouissaoui H, Reinbolt J, Hammami A, Jaoua S. Purification, amino acid sequence, and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J. Appl. Microbiol. 98: 881–888 (2005)

    Article  Google Scholar 

  32. 32.

    Gray EJ, Lee KD, Souleimanov AM, Di Falco MR, Zhou X, Ly A, Charles TC, Driscoll BT, Smith DL. A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB 17: Isolation and classification. J. Appl. Microbiol. 100: 545–554 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hyun-Dong Paik.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, SY., Lee, NK., Han, E.J. et al. Characterization of subtilin KU43 Produced by Bacillus subtilis KU43 isolated from traditional Korean fermented foods. Food Sci Biotechnol 21, 1433–1438 (2012). https://doi.org/10.1007/s10068-012-0188-9

Download citation

Keywords

  • bacteriocin
  • antimicrobial peptide
  • Bacillus spp.
  • Korean traditional fermented food