Skip to main content
Log in

In vitro antioxidative and antigenotoxic capacity of wheat aleurone extracted with solvents

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This study investigated the antioxidant and antigenotoxic ability of different wheat aleurone (WA) extracts. Oxygen radical absorbance capacity (ORAC), which was the highest in the aleurone ethanol extract (AEE) and the lowest in the acetone extract (AAE), was highly correlated with total polyphenol content (r=0.897, p<0.01). DPPH radical scavenging activity was highest in AAE followed by AEE and the aleurone methanol extract (AME). The ABTS·+ quenching properties of the WA extracts were similar to their DPPH radical scavenging activity. Furthermore, WA extracts had a protective effect against oxidative stress-induced DNA damage in both human leukocytes and HT-29 human colon carcinoma cells. This inhibitory activity was attributed to their unique phytochemical content, with a strong correlation between DPPH radical scavenging activity and inhibition of DNA damage (r=0.779, p<0.01 at 10 ∝g/mL AAE). Therefore, WA might be a promising component of future nutraceuticals or value-added products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balentine DA, Albano MC, Nair MG. Role of medicinal plants, herbs, and spices in protecting human health. Nutr. Rev. 57: S41–S45 (1999)

    Article  CAS  Google Scholar 

  2. Sen S, Chakraborty R, Sridhar C, Reddy YSR, De B. Free radicals, antioxidants, diseases, and phytomedicines: Current status and future prospect. Int. J. Pharm. Sci. Res. 3: 32–44 (2010)

    Google Scholar 

  3. Jacobs DR Jr, Meyer KA, Kushi LH, Folsom AR. Whole grain intake may reduce risk of coronary heart disease death in postmenopausal women: The Iowa women’s health study. Am. J. Clin. Nutr. 68: 248–257 (1998)

    CAS  Google Scholar 

  4. Dewanto V, Wu X, Liu RH. Processed sweet corn has higher antioxidant activity. J. Agr. Food Chem. 50: 4959–4964 (2002)

    Article  CAS  Google Scholar 

  5. Nahapetian A, Bassiri A. Variations in concentrations and interrelationships phytate, phosphorous, magnesium, calcium, zinc, and iron in wheat varieties during two years. J. Agr. Food Chem. 24: 947–950 (1976)

    Article  CAS  Google Scholar 

  6. Finney PL. Potential for the use of germinated wheat and soybeans to enhance human nutrition. Adv. Exp. Med. Biol. 105: 681–701 (1979)

    Article  Google Scholar 

  7. Mateo Anson N, van den Berg R, Havenaar R, Bast A, Haenen GR. Ferulic acid from aleurone determines the antioxidant potency of wheat grain (Triticum aestivum L.). J. Agr. Food Chem. 56: 5589–5594 (2008)

    Article  Google Scholar 

  8. Graham SF, Hollis JH, Migaud M, Browne RA. Analysis of betaine and choline contents of aleurone, bran, and flour fractions of wheat (Triticum aestivum L.) using 1H nuclear magnetic resonance (NMR) spectroscopy. J. Agr. Food Chem. 57: 1948–1951 (2009)

    Article  CAS  Google Scholar 

  9. Liyana-Pathirana C, Dexter J, Shahidi F. Antioxidant properties of wheat as affected by pearling. J. Agr. Food Chem. 17: 6177–6184 (2006)

    Article  Google Scholar 

  10. Adom KK, Sorrells ME, Liu RH. Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J. Agr. Food Chem. 53: 2297–2306 (2005)

    Article  CAS  Google Scholar 

  11. Stein K, Borowicki A, Scharlau D, Glei M. Fermented wheat aleurone induces enzymes involved in detoxification of carcinogens and in antioxidative defence in human colon cells. Brit. J. Nutr. 104: 1101–1111 (2010)

    Article  CAS  Google Scholar 

  12. Bohm A, Bogoni C, Behrens R, Otto T. Method for the extraction of aleurone from bran. World Patent WO, 02/15711A2 (2002)

  13. Folin O, Denis W. On phosphotungastic-phosphomolybdic compounds as color reagents. J. Biol. Chem. 12: 239–249 (1912)

    CAS  Google Scholar 

  14. Mensor LL, Menezes FS, Leitao GG, Reis AS, Santos TC, Coube CS, Leitao SG. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res. 15: 127–130 (2001)

    Article  CAS  Google Scholar 

  15. Kurihara H, Fukami H, Asami S, Totoda Y, Nakai M, Shibata H, Yao XS. Effects of oolong tea on plasma antioxdative capacity in mice loaded with restraint stress assessed using the oxygen radical absorbance capacity (ORAC) assay. Biol. Pharm. Bull. 27: 1093–1098 (2004)

    Article  CAS  Google Scholar 

  16. Rice-Evans C, Miller NJ. Total antioxidant status in plasma and body fluids. Method. Enzymol. 234: 279–293 (1994)

    Article  CAS  Google Scholar 

  17. Singh PN, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175: 184–191 (1988)

    Article  CAS  Google Scholar 

  18. Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J. Agr. Food Chem. 53: 1841–1856 (2005)

    Article  CAS  Google Scholar 

  19. Moure A, Franco D, Sineiro J, Domínguez H, Núñez MJ, Lema JM. Evaluation of extracts from Gevuina avellana hulls as antioxidants. J. Agr. Food Chem. 48: 3890–3897 (2000)

    Article  CAS  Google Scholar 

  20. Rice-Evans CA, Miller NJ, Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2: 152–159 (1997)

    Article  Google Scholar 

  21. Chung HS, Woo WS. A quinolone alkaloid with antioxidant activity from the aleurone layer of anthocyanin-pigmented rice. J. Nat. Prod. 64: 1579–1580 (2001)

    Article  CAS  Google Scholar 

  22. Ferguson LR, Harris PJ. Protection against cancer by wheat bran: Role of dietary fibre and phytochemicals. Eur. J. Cancer Prev. 8: 17–25 (1999)

    Article  CAS  Google Scholar 

  23. Wolfe KL, Liu RH. Structure-activity relationships of flavonoids in the cellular antioxidant activity assay. J. Agr. Food Chem. 56: 8404–8411 (2008)

    Article  CAS  Google Scholar 

  24. Handelman G, Cao G, Walter MF, Nightingale ZD, Paul GL, Prior RL, Blumberg JB. Antioxidant capacity of oat (Avena sativa L.) extracts. 1. Inhibition of low-density lipoprotein oxidation and oxygen radical absorbance capacity. J. Agr. Food Chem. 47: 4888–4893 (1999)

    Article  CAS  Google Scholar 

  25. Gorinstein S, Leontowicz H, Lojek A, Leontowicz M, Ciz M, Krzeminski R, Gralak M, Czerwinski J, Jastrzebski Z, Trakhtenberg S, Grigelmo-Miguel N, Soliva-Fortuny R, Martin-Belloso O. Olive oils improve lipid metabolism and increase antioxidant potential in rats fed diets containing cholesterol. J. Agr. Food Chem. 50: 6012–6018 (2002)

    Article  Google Scholar 

  26. Gorinstein S, Martý’n-Belloso O, Park YS, Haruenkit R, Lojek A, CÍŽ M, Caspi A, Libman I, Trakhtenberg S. Comparison of some biochemical characteristic of different citrus fruits. Food Chem. 74: 309–315 (2001)

    Article  CAS  Google Scholar 

  27. Yu L, Haley S, Perret J, Harris M, Wilson J, Qian M. Free radical scavenging properties of wheat extracts. J. Agr. Food Chem. 50: 1619–1624 (2002)

    Article  CAS  Google Scholar 

  28. Glei M, Hofmann T, Küster K, Hollmann J, Lindhauer MG, Pool-Zobel BL. Both wheat bran arabinoxylans and gut flora mediated fermentation products protect human colon cells from genotoxic activities of 4-hydroxynonenal and hydrogen peroxide. J. Agr. Food Chem. 54: 2088–2095 (2006)

    Article  CAS  Google Scholar 

  29. Nam SH, Kang MY. Comparison of inhibitory effect of rice branextracts of the colored rice cultivars on carcinogenesis. J. Korean Soc. Argic. Chem. Biotechnol. 41: 78–83 (1998)

    Google Scholar 

  30. Park MJ, Kim SR, Huh H, Jung JH, Kim YC. Betain attenuates glutamate-induced neurotoxicity in primary cultured brain cells. Arch. Pharm. Res. 17: 343–347 (1994)

    Article  CAS  Google Scholar 

  31. Williams SG. The role of phytic acid in the wheat grain. Plant Physiol. 45: 376–381 (1970)

    Article  CAS  Google Scholar 

  32. Hídvégi M, Lásztity R. Phytic acid content of cereals and legumes and interaction with proteins. Period. Polytech. Ser. Chem. 46: 59–64 (2002)

    Google Scholar 

  33. Eberhard M, Föller M, Lang F. Effect of phytic acid on suicidal erythrocyte death. J. Agr. Food Chem. 58: 2028–2033 (2010)

    Article  CAS  Google Scholar 

  34. Reinhold JG, Nasr K, Lahimgarzadeh A, Hedayati H. Effects of purified phytate and phytate-rich bread upon metabolism of zinc, calcium, phosphorus, and nitrogen in man. Lancet 301: 283–288 (1973)

    Article  Google Scholar 

  35. Jenab M, Thompson LU. The influence of phytic acid in wheat bran on early biomarkers of colon carcinogenesis. Carcinogenesis 19: 1087–1092 (1998)

    Article  CAS  Google Scholar 

  36. Midorikawa K, Murata M, Oikawa S, Hiraku Y, Kawanishi S. Protective effect of phytic acid on oxidative DNA damage with reference to cancer chemoprevention. Biochem. Bioph. Res. Co. 288: 552–557 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunju Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Glei, M. & Park, E. In vitro antioxidative and antigenotoxic capacity of wheat aleurone extracted with solvents. Food Sci Biotechnol 21, 1383–1390 (2012). https://doi.org/10.1007/s10068-012-0182-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0182-2

Keywords

Navigation