Skip to main content
Log in

Experimental characterization and modelling of drying of pear slices

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of temperature on the drying kinetics of pear slices was investigated. The drying process was carried out at temperatures of 55, 65, and 75°C. Drying time decreased considerably with increased air temperature. Seven mathematical models available in the literature were tested with the drying patterns. The Wang and Singh, and Midilli et al. models were given the best results in describing drying of pear slices. Effective moisture diffusivity increased with increasing air temperature, and varied from 0.85 to 2.18×10−10 m2/s over the temperature range investigated, with activation energy equal to 44.78 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park KJ, Bin A, Brod FPR. Drying of pear ‘d’Anjou’ with and without osmotic dehydration. J. Food Eng. 56: 93–103 (2002)

    Google Scholar 

  2. FAO.FaoStat: Agriculture Data. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor. Accessed February 23, 2012.

  3. Fumagalli F, Silveria AM. Quality evaluation of microwave-dried ‘Packham’s Triumph’ pear. Dry. Technol. 23: 2215–2226 (2005)

    Article  CAS  Google Scholar 

  4. Falade KO, Solademi OJ. Modelling of air drying of fresh and blanched sweet potato slices. Int. J. Food Sci. Tech. 45: 278–288 (2010)

    Article  CAS  Google Scholar 

  5. Guiné RPF. Moisture diffusivity in pears: Experimental determination and derivation of a mathematical prediction model. Int. J. Food Sci. Tech. 41: 1177–1181 (2006)

    Article  Google Scholar 

  6. Sacilik K, Elicin AK, Unal G. Drying kinetics of ‘Uryani’ plum in a convective hot-air dryer. J. Food Eng. 76: 362–368 (2006)

    Article  Google Scholar 

  7. McMinn WAW. Thin-layer modelling of the convective, microwave, microwave-convective, and microwave-vacuum drying of lactose powder. J. Food Eng. 72: 113–123 (2006)

    Article  CAS  Google Scholar 

  8. Togrul, IT, Pehlivan D. Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. J. Food Eng. 65: 413–425 (2003)

    Article  Google Scholar 

  9. Doymaz I. Effect of pre-treatments using potassium metabisulphide and alkaline ethyl oleate on the drying kinetics of apricots. Biosyst. Eng. 89: 281–287 (2004)

    Article  Google Scholar 

  10. Babalis SB, Belessiotis V. Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. J. Food Eng. 65: 449–458 (2004)

    Article  Google Scholar 

  11. Sabarez HT, Price WE. A diffusion model for prune dehydration. J. Food Eng. 42: 167–172 (1999)

    Article  Google Scholar 

  12. Goyal RK, Kingsly ARP, Manikantan MR, Ilyas MR. Mathematical modelling of thin layer drying kinetics of plum in a tunnel dryer. J. Food Eng. 79: 176–180 (2007)

    Article  Google Scholar 

  13. Akpinar EK, Bicer Y, Midilli A. Modelling and experimental study on drying of apple slices in a convective cyclone dryer. J. Food Process Eng. 26: 515–541 (2003)

    Article  Google Scholar 

  14. Seiiedlou S, Ghasemzadeh HR, Hamdami N, Talati F, Moghaddam M. Convective drying of apple: Mathematical modelling and determination of some quality parameters. Int. J. Agr. Biol. 12: 171–178 (2010)

    Google Scholar 

  15. Tarhan S, Ergunes G, Taser OF. Selection of chemical and thermal pre-treatment combination to reduce the dehydration time of sour cherry (Prunus cerasus L.). J. Food Process Eng. 29: 651–663 (2006)

    Article  Google Scholar 

  16. Djendoubi Mrad ND, Boudhriona N, Kechaou N, Courtois F, Bonazzi C. Influence of air drying temperature on kinetics, physicochemical properties, total phenolic content and ascorbic acid of pears. Food Bioprod. Process. 90: 433–441 (2011)

    Article  Google Scholar 

  17. Roberts JS, Kidd DR, Padilla-Zakour O. Drying kinetics of grape seeds. J. Food Eng. 89: 460–465 (2008)

    Article  Google Scholar 

  18. Ghodake HM, Goswami TK, Chakraverty A. Mathematical modelling of withering characteristics of tea leaves. Dry. Technol. 24: 159–164 (2006)

    Article  Google Scholar 

  19. Vega-Gálvez A, Ayala-Aponte A, Notte E, De La Fuente L, Lemus-Mondaca R. Mathematical modelling of mass transfer during convective dehydration of brown algae Macrocystis pyrifera. Dry. Technol. 26: 1610–1616 (2008)

    Article  Google Scholar 

  20. Akpinar EK. Mathematical modelling and experimental investigation on sun and solar drying of white mulberry. J. Mech. Sci. Technol. 22: 1544–1553 (2008)

    Article  Google Scholar 

  21. Shen F, Peng L, Zhang Y, Wu J, Zhang X, Yang G, Peng H, Qi H. Thin-layer drying kinetics and quality changes of sweet sorghum stalk for ethanol production as affected by drying temperature. Ind. Crop. Prod. 34: 1588–1594 (2011)

    Article  CAS  Google Scholar 

  22. Dissa AO, Bathiebo DJ, Desmorieux H, Coulibaly O, Koulidiati J. Experimental characterization and modelling of thin layer direct solar drying of ‘Amelia’ and ‘Brooks’ mangoes. Energy 36: 2517–2527 (2011)

    Article  Google Scholar 

  23. Perea-Flores MJ, Garibay-Febles V, Chanona-Pérez JJ, Calderón-Domínguez G, Méndez-Méndez JV, Palacios-González E, Gutiéerrez-López GF. Mathematical modelling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures. Ind. Crop Prod. 38: 64–71 (2012)

    Article  CAS  Google Scholar 

  24. Sobukola OP, Dairo OU, Odunewu AV. Convective hot air drying of blanched yam slices. Int. J. Food Sci. Tech. 43: 1233–1238 (2008)

    Article  CAS  Google Scholar 

  25. Lee JH, Kim HJ. Modelling for vacuum drying characteristics of onion slices. Food Sci. Biotechnol. 18: 1293–1297 (2009)

    Google Scholar 

  26. Crank J. Diffusion in a plane sheet. pp. 43–61. In: The Mathematics of Diffusion. Clarendon Press, Inc., Oxford, UK (1975)

    Google Scholar 

  27. Zogzas NP, Maroulis ZB, Marinos-Kouris D. Moisture diffusivity data compilation in foodstuffs. Dry. Technol. 14: 2225–2253 (1996)

    Article  CAS  Google Scholar 

  28. Azzouz S, Guizani A, Jomaa W, Belghith A. Moisture diffusivity and drying kinetic equation of convective drying of grapes. J. Food Eng. 55: 323–330 (2002)

    Article  Google Scholar 

  29. Rafiee S, Sharifi M, Keyhani A, Omid M, Jfari A, Mohtasebi SS, Mobli H. Modelling effective moisture diffusivity of orange slice (Thomson Cv.). Int. J. Food Prop. 13: 32–40 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Doymaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doymaz, İ., İsmail, O. Experimental characterization and modelling of drying of pear slices. Food Sci Biotechnol 21, 1377–1381 (2012). https://doi.org/10.1007/s10068-012-0181-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0181-3

Keywords

Navigation