Advertisement

Food Science and Biotechnology

, Volume 21, Issue 5, pp 1235–1241 | Cite as

Chaga mushroom (Inonotus obliquus) grown on germinated brown rice suppresses inflammation associated with colitis in mice

  • Trishna Debnath
  • Md. Abul Hasnat
  • Mehnaz Pervin
  • Seung Yuan Lee
  • Sa Ra Park
  • Da Hye Kim
  • Hyuk Jung Kweon
  • Jong Moon Kim
  • Beong Ou LimEmail author
Research Article

Abstract

The aim of this study was to evaluate the antiinflammatory activity of ethanol extracts from chaga mushroom (Inonotus obliquus, IOE) grown on germinated brown rice. A total of 35 male BALB/c mice were divided into 5 treatment groups and given a commercial diet (A), IOE administration (B), dextran sodium sulfate (DSS) treatment to induce colitis (C), IOE administration+DSSinduced colitis (D), and sulfasalazine administration+ DSS-induced colitis (E). IOE treatment (D) decreased the expression of tumor necrosis factor (TNF)-α, cyclooxygenase (COX)-2, interleukin (IL)-4, interferon (IFN)-γ, signal transducers and activators of transcription (STAT)1, and STAT6 and showed lower levels of immunoglobulin (Ig)E and IgA in the spleen and mesenteric lymph node (MLN) compared to those of the DSS-induced colitis group (C). In addition, IOE suppressed the DSS-induced colonic tissue destruction. Therefore, our data strongly suggests that IOE could be a potent anti-inflammatory agent.

Keywords

inflammatory bowel disease Crohn’s disease ulcerative colitis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fiocchi C. Inflammatory bowel disease: Etiology and pathogenesis. Gastroenterology 115: 182–205 (1998)CrossRefGoogle Scholar
  2. 2.
    Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu. Rev. Immunol. 28: 573–621 (2010)CrossRefGoogle Scholar
  3. 3.
    Baumgart DC, Sandborn WJ. Inflammatory bowel disease: Clinical aspects and established and evolving therapies. Lancet 369: 1641–1657 (2007)CrossRefGoogle Scholar
  4. 4.
    Peppercorn MA. Sulfasalazine. Pharmacology, clinical use, toxicity, and related new drug development. Ann. Intern. Med. 101: 377–386 (1984)Google Scholar
  5. 5.
    Kim YO, Park HW, Kim JH, Lee Y, Moon SH, Shin CS. Anticancer effect and structural haracterization of endo-polysaccharide from cultivated mycelia of Inonotus obliquus. Life Sci. 79: 72–80 (2006)CrossRefGoogle Scholar
  6. 6.
    Aruoma OI. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil. Chem. Soc. 75: 199–212 (1998)CrossRefGoogle Scholar
  7. 7.
    Park YK, Lee HB, Jeon EJ, Jung HU, Kang MH. Chaga mushroom extract inhibits oxidative DNA damage in human lymphocytes as assessed by comet assay. BioFactors 21: 109–112 (2004)CrossRefGoogle Scholar
  8. 8.
    Hwang Y, Noh G, Kim S. Effect of Inonotus obliquus extracts on proliferation and caspase-3 activity in human gastro-intestinal cancer cell lines. J. Life Sci. 36: 18–23 (2007)Google Scholar
  9. 9.
    Jeon TI, Hwang SG, Lim BO, Park DK. Extracts of Phellinus linteus grown on germinated brown rice suppress liver damage induced by carbon tetrachloride in rats. Biotechnol. Lett. 25: 2093–2096 (2003)CrossRefGoogle Scholar
  10. 10.
    Lim BO, Jeon T, Hwang SG, Moon JH, Park DK. Phellinus linteus grown on germinated brown rice suppresses IgE production by the modulation of Th1/Th2 balance in murine mesenteric lymph node lymphocytes. Biotechnol. Lett. 27: 613–617 (2005)CrossRefGoogle Scholar
  11. 11.
    Lim BO, Yamada K, Cho BG, Jeon T, Hwang SG, Park T, Kang SA, Park DK. Comparative study on the modulation of IgE and cytokine production by Phellinus linteus grown on germinated brown rice, Phellinus linteus and germinated brown rice in murine splenocytes. Biosci. Biotech. Bioch. 68: 2391–2394 (2004)CrossRefGoogle Scholar
  12. 12.
    Lelono RAA, Tachibana S, Itoh K. Isolation of antifungal compounds from Gardenia jasminoides. Pak. J. Biol Sci. 12: 949–956 (2009)Google Scholar
  13. 13.
    Cooper HS, Murthy SNS, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab. Invest. 69: 238–249 (1993)Google Scholar
  14. 14.
    Bjoërck S, Jennische E, Dahlström A, Ahlman H. Influence of topical rectal application of drugs on dextran sulfate-induced colitis in rats. Digest. Dis. Sci. 42: 824–832 (1997)CrossRefGoogle Scholar
  15. 15.
    Wirtz S, Neurath MF. Mouse models of inflammatory bowel disease. Adv. Drug. Deliver. Rev. 59: 1073–1083 (2007)CrossRefGoogle Scholar
  16. 16.
    Zenewicz LA, Antov A, Flavell RA. CD4 T-cell differentiation and inflammatory bowel disease. Trends Mol. Med. 15: 199–207 (2009)CrossRefGoogle Scholar
  17. 17.
    Holdstock G, Ershler WB, Krawitt EL. Defective lymphocyte IgA production in inflammatory bowel disease. Clin. Immunol. Immunop. 24: 47–54 (1982)CrossRefGoogle Scholar
  18. 18.
    Sampson HA, Metclafe DD. Food allergies. J. Am. Med. Assoc. 268: 2840–2844 (1992)CrossRefGoogle Scholar
  19. 19.
    Kang OH, Kim DK, Choi YA, Park HJ, Tae J, Kang CS, Choi SC, Nah YH, Lee HK, Lee YM. Suppressive effect of nonanaphylactogenic anti-IgE antibody on the development of dextran sulfate sodium-induced colitis. Int. J. Mol. Med. 18: 893–899 (2006)Google Scholar
  20. 20.
    Murch SH, Lamkin VA, Savage MO, Walker-Smith JA, Macdonald TT. Serum concentrations of tumour necrosis factor α in childhood chronic inflammatory bowel disease. Gut 3 32: 913–917 (1991)CrossRefGoogle Scholar
  21. 21.
    Park YM, Won JH, Kim YH, Choi JW, Park HJ, Lee KT. In vivo and in vitro anti-inflammatory and anti-nociceptive effects of the methanol extract of Inonotus obliquus. J. Ethnopharmacol. 101: 120–128 (2005)CrossRefGoogle Scholar
  22. 22.
    Wan YY. Multi-tasking of helper T cells. Immunology 130: 166–171 (2010)CrossRefGoogle Scholar
  23. 23.
    Forbes E, Panhuys NV, Min B, Gros GL. Differential requirements for IL-4/STAT6 signalling in CD4 T-cell fate determination and Th2-immune effector responses. Immunol. Cell Biol. 88: 240–243 (2010)CrossRefGoogle Scholar
  24. 24.
    Dieleman LA, Palmen MJHJ, Akol H, Bloemena E, Pen AS, Meuwissen ASGM, Van Rees EP. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin. Exp. Immunol. 114: 385–391 (1998)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Trishna Debnath
    • 1
  • Md. Abul Hasnat
    • 1
  • Mehnaz Pervin
    • 1
  • Seung Yuan Lee
    • 1
  • Sa Ra Park
    • 1
  • Da Hye Kim
    • 1
  • Hyuk Jung Kweon
    • 2
    • 4
  • Jong Moon Kim
    • 3
    • 4
  • Beong Ou Lim
    • 1
    • 4
    Email author
  1. 1.College of Biomedical & Health Science, Department of Life ScienceKonkuk UniversityChungju, ChungbukKorea
  2. 2.Department of Family MedicineKonkuk UniversityChungju, ChungbukKorea
  3. 3.Rehabilitation MedicineKonkuk University, Chungju HospitalChungju, ChungbukKorea
  4. 4.Research Institute of Inflammatory DiseaseKonkuk UniversityChungju, ChungbukKorea

Personalised recommendations