Skip to main content
Log in

Bioactivities and action mechanisms of Acanthopanax species

  • Research Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Acanthopanax species (Araliaceae) are used in traditional medicines in Eastern cultures. In vitro and in vivo experimental studies have demonstrated that many Acanthopanax species exhibit multiple biological effects against oxidative stress, inflammation, cancer, and obesity. Additionally, analytical studies have identified compounds from Acanthopanax and described their biological mechanisms of action. One of such active compounds suppresses extracellular signal regulated kinase 1/2 phosphorylation and its kinase activity through direct binding. This compound also suppresses the activities of activator protein-1 and nuclear factor κ-light-chain-enhancer of B cells in vitro and in vivo. Thus, further studies of the use of compounds from Acanthopanax species and more details of their mechanisms of action may help in broadening the use of Acanthopanax species in functional foods and pharmacological agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phuong NT, Lee KA, Jeong SJ, Fu CX, Choi JK, Kim YH, Kang JS. Capillary electrophoretic method for the determination of diterpenoid isomers in Acanthopanax species. J. iPharm. Biomed. Anal. 40: 56–61 (2006)

    Article  CAS  Google Scholar 

  2. Lin QY, Jin LJ, Ma YS, Shi M, Xu YP. Acanthopanax senticosus inhibits nitric oxide production in murine macrophages in vitro and in vivo. Phytother. Res. 21: 879–883 (2007)

    Article  Google Scholar 

  3. Lin QY, Jin LJ, Cao ZH, Li HQ, Xu YP. Protective effect of Acanthopanax senticosus extract against endotoxic shock in mice. J. Ethnopharmacol. 118: 495–502 (2008)

    Article  CAS  Google Scholar 

  4. Nhiem NX, Tung NH, Kiem PV, Minh CV, Ding Y, Hyun JH, Kang HK, Kim YH. Lupane triterpene glycosides from leave of Acanthopanax koreanum and their cytotoxic activity. Chem. Pharm. Bull. 57: 986–989 (2009)

    Article  Google Scholar 

  5. Ha ES, Hwang SH, Shin KS, Yu KW, Lee KH, Choi JS, Park WM, Yoon TJ. Anti-metastatic activity of glycoprotein fractionated from Acanthopanax senticosus, involvement of NK-cell and macrophage activation. Arch. Pharm. Res. 27: 217–224 (2004)

    Article  CAS  Google Scholar 

  6. Park SH, Lee SG, Kang SK, Chung SH. Acanthopanax senticosus reverses fatty liver disease and hyperglycemia in ob/ob mice. Arch. Pharm. Res. 29: 768–776 (2006)

    Article  CAS  Google Scholar 

  7. Kang OH, Choi YA, Park HJ, Kang CS, Song BS, Choi SC, Nah YH, Yun KJ, Cai XF, Kim YH, Bae KH, Lee YM. Inhibition of trypsin-induced mast cell activation by acanthoic acid. J. Ethnopharmacol. 105: 326–331 (2006)

    Article  CAS  Google Scholar 

  8. Yamazaki T, Shimosaka S, Sasaki H, Matsumura T, Tukiyama T, Tokiwa T. (+)-Syringaresinol-di-O-β-d-glucoside, a phenolic compound from Acanthopanax senticosus Harms, suppresses proinflammatory mediators in SW982 human synovial sarcoma cells by inhibiting activating protein-1 and/or nuclear factor-κB activities. Toxicol. In Vitro 21: 1530–1537 (2007)

    Article  CAS  Google Scholar 

  9. Jung HJ, Park HJ, Kim RG, Shin KM, Ha J, Choi JW, Kim HJ, Lee YS, Lee KT. In vivo anti-inflammatory and antinociceptive effects of liriodendrin isolated from the stem bark of Acanthopanax senticosus. Planta Med. 69: 610–616 (2003)

    Article  CAS  Google Scholar 

  10. Li Q, Jia Y, Xu L, Wang X, Shen Z, Liu Y, Bi K. Simultaneous determination of protocatechuic acid, syringin, chlorogenic acid, caffeic acid, liriodendrin, and isofraxidin in Acanthopanax senticosus Harms by HPLC-DAD. Biol. Pharm. Bull. 29: 532–534 (2006)

    Article  CAS  Google Scholar 

  11. Lee S, Kim BK, Cho SH, Shin KH. Phytochemical constituents from the fruits of Acanthopanax sessiliflorus. Arch. Pharm. Res. 25: 280–284 (2002)

    Article  CAS  Google Scholar 

  12. Lee S, Ji J, Shin KH, Kim BK. Sessiline, a new nitrogenous compound from the fruits of Acanthopanax sessiliflorus. Planta Med. 68: 939–941 (2002)

    Article  CAS  Google Scholar 

  13. Yoshizumi K, Murota K, Watanabe S, Tomi H, Tsuji T, Terao J. Chiisanoside is not absorbed but inhibits oil absorption in the small intestine of rodents. Biosci. Biotech. Bioch. 72: 1126–1129 (2008)

    Article  CAS  Google Scholar 

  14. Lee S, Ban HS, Kim YP, Kim BK, Cho SH, Ohuchi K, Shin KH. Lignans from Acanthopanax chiisanensis having an inhibitory activity on prostaglandin E2 production. Phytother. Res. 19: 103–106 (2005)

    Article  CAS  Google Scholar 

  15. Kim JA, Yang SY, Koo JE, Koh YS, Kim YH. Lupane-type triterpenoids from the steamed leaves of Acanthopanax koreanum and their inhibitory effects on the LPS-stimulated pro-inflammatory cytokine production in bone marrow-derived dendritic cells. Bioorg. Med. Chem. Lett. 20: 6703–6707 (2010)

    Article  CAS  Google Scholar 

  16. Park SH, Nhiem NX, Kiem PV, Choi EM, Kim JA, Kim YH. A new norlupane triterpene from the leaves of Acanthopanax koreanum increases the differentiation of osteoblastic MC3T3-e1 cells. Arch. Pharm. Res. 33: 75–80 (2010)

    Article  CAS  Google Scholar 

  17. Genestra M. Oxyl radicals, redox-sensitive signalling cascades, and antioxidants. Cellular Signal. 19: 1807–1819 (2007)

    Article  CAS  Google Scholar 

  18. Storz P. Reactive oxygen species-mediated mitochondria-to-nucleus signaling: A key to aging and radical-caused diseases. Sci STKE 2006 (332):re3 (2006)

  19. Chen CC, Hsu JD, Wang SF, Chiang HC, Yang MY, Kao ES, Ho YC, Wang CJ. Hibiscus sabdariffa extract inhibits the development of atherosclerosis in cholesterol-fed rabbits. J. Agr. Food Chem. 51: 5472–5477 (2003)

    Article  CAS  Google Scholar 

  20. Lee S, Son D, Ryu J, Lee YS, Jung SH, Kang J, Lee SY, Kim HS, Shin KH. Anti-oxidant activities of Acanthopanax senticosus stems and their lignan components. Arch. Pharm. Res. 27: 106–110 (2004)

    Article  CAS  Google Scholar 

  21. Seo YN, Lee MY. Inhibitory effect of antioxidants on the benz[a]anthracene-induced oxidative DNA damage in lymphocyte. J. Environ. Biol. 32: 7–10 (2011)

    Google Scholar 

  22. Liang Q, Yu X, Qu S, Xu H, Sui D. Acanthopanax senticosides B ameliorates oxidative damage induced by hydrogen peroxide in cultured neonatal rat cardiomyocytes. Eur. J. Pharmacol. 62: 209–215 (2010)

    Article  Google Scholar 

  23. Nhiem NX, Kim KC, Kim AD, Hyun JW, Kang HK, Van Kiem P, Van Minh C, Thu VK, Tai BH, Kim JA, Kim YH. Phenylpropanoids from the leaves of Acanthopanax koreanum and their antioxidant activity. J. Asian Nat. Prod. Res. 13: 56–61 (2011)

    Article  CAS  Google Scholar 

  24. Bertagnolli MM. Chemoprevention of colorectal cancer with cyclooxygenase-2 inhibitors: Two steps forward, one step back. Lancet Oncol. 8: 439–443 (2007)

    Article  CAS  Google Scholar 

  25. Balkwill F, Mantovani A. Cancer and inflammation: Implications for pharmacology and therapeutics. Clin. Pharmacol. Ther. 87: 401–406 (2010)

    Article  CAS  Google Scholar 

  26. Fischer SM, Lo HH, Gordon GB, Seibert K, Kelloff G, Lubet RA, Conti CJ. Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, and indomethacin against ultraviolet light-induced skin carcinogenesis. Mol. Carcinogen. 25: 231–240 (1999)

    Article  CAS  Google Scholar 

  27. Li JJ, Westergaard C, Ghosh P, Colburn NH. Inhibitors of both nuclear factor-κB and activator protein-1 activation block the neoplastic transformation response. Cancer Res. 57: 3569–3576 (1997)

    CAS  Google Scholar 

  28. Yang EJ, Moon JY, Lee JS, Koh J, Lee NH, Hyun CG. Acanthopanax koreanum fruit waste inhibits lipopolysaccharideinduced production of nitric oxide and prostaglandin E 2 in RAW 264.7 macrophages. J. Biomed. Biotechnol. 2010: 715–739 (2010)

    Google Scholar 

  29. Nhiem NX, Kiem PV, Minh CV, Tai BH, Quang TH, Soung KS, Koo JE, Koh YS, Kim YH. Anti-inflammatory activity on LPSstimulated dendritic cells of lupanetype triterpenoids from the leaves of Acanthopanax koreanum. Arch. Pharm. Res. 34: 1593–1598 (2011)

    Article  Google Scholar 

  30. Ban HS, Lee S, Kim YP, Yamaki K, Shin KH, Ohuchi K. Inhibition of prostaglandin E(2) production by taiwanin C isolated from the root of Acanthopanax chiisanensis and the mechanism of action. Biochem. Pharmacol. 64: 1345–1354 (2002)

    Article  CAS  Google Scholar 

  31. Kim JA, Yang SY, Song SB, Kim YH. Effects of impressic acid from Acanthopanax koreanum on NF-κB and PPARγ activities. Arch. Pharm. Res. 34: 1347–1351 (2011)

    Article  CAS  Google Scholar 

  32. Hibasami H, Fujikawa T, Takeda H, Nishibe S, Satoh T, Fujisawa T, Nakashima K. Induction of apoptosis by Acanthopanax senticosus HARMS and its component, sesamin in human stomach cancer KATO III cells. Oncol. Rep. 7: 1213–1216 (2000)

    CAS  Google Scholar 

  33. Jung HJ, Nam JH, Choi J, Lee KT, Park HJ. Antiinflammatory effects of chiisanoside and chiisanogenin obtained from the leaves of Acanthopanax chiisanensis in the carrageenan- and Freund’s complete adjuvant-induced rats. J. Ethnopharmacol. 97: 359–367 (2005)

    Article  CAS  Google Scholar 

  34. Bode AM, Dong Z. Signal transduction pathways: Targets for chemoprevention of skin cancer. Lancet Oncol. 1: 181–188 (2000)

    Article  CAS  Google Scholar 

  35. Sporn MB. Carcinogenesis and cancer: Different perspectives on the same disease. Cancer Res. 51: 6215–6218 (1991)

    CAS  Google Scholar 

  36. Jang MH, Shin MC, Kim YJ, Kim CJ, Chung JH, Seo JC, Kim EH, Kim KY, Lee CY, Kim KM. Protective effect of Acanthopanax senticosus against ethanol-induced apoptosis of human neuroblastoma cell line SK-N-MC. Am. J. Chin. Med. 31: 379–388 (2003)

    Article  Google Scholar 

  37. Lu X, Su M, Li Y, Zeng L, Liu X, Li J, Zheng B, Wang S. Effect of Acanthopanax giraldii Harms var. Hispidus Hoo polysaccharides on the human gastric cancer cell line SGC-7901 and its possible mechanism. Chin. Med. J. 115: 716–721 (2002)

    Google Scholar 

  38. Yoon TJ, Yoo YC, Lee SW, Shin KS, Choi WH, Hwang SH, Ha ES, Jo SK, Kim SH, Park WM. Anti-metastatic activity of Acanthopanax senticosus extract and its possible immunological mechanism of action. J. Ethnopharmacol. 93: 247–253 (2004)

    Article  Google Scholar 

  39. Yamazaki T, Tokiwa T. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits matrix metalloproteinase-7 expression and cell invasion of human hepatoma cells. Biol. Pharm. Bull. 33: 1716–1722 (2010)

    Article  CAS  Google Scholar 

  40. Yang DJ, Chang YY, Hsu CL, Liu CW, Lin YL, Lin YH, Liu KC, Chen YC. Antiobesity and hypolipidemic effects of polyphenol-rich longan (Dimocarpus longans Lour.) flower water extract in hypercaloric-dietary rats. J. Agr. Food Chem. 58: 2020–2027 (2010)

    Article  CAS  Google Scholar 

  41. Chen WP, Ho BY, Lee CL, Lee CH, Pan TM. Red mold rice prevents the development of obesity, dyslipidemia, and hyperinsulinemia induced by high-fat diet. Int. J. Obesity 32: 1694–1704 (2008)

    Article  CAS  Google Scholar 

  42. Hsu CL, Wu CH, Huang SL, Yen GC. Phenolic compounds rutin and O-coumaric acid ameliorate obesity induced by high-fat diet in rats. J. Agr. Food Chem. 57: 425–431 (2009)

    Article  CAS  Google Scholar 

  43. Stubbs RJ, Whybrow S. Energy density, diet composition, and palatability: Influences on overall food energy intake in humans. Physiol. Behav. 81: 755–764 (2004)

    Article  CAS  Google Scholar 

  44. Osada K, Suzuki T, Kawakami Y, Senda M, Kasai A, Sami M, Ohta Y, Kanda T, Ikeda M. Dose-dependent hypocholesterolemic actions of dietary apple polyphenol in rats fed cholesterol. Lipids 41: 133–139 (2006)

    Article  CAS  Google Scholar 

  45. Cha YS, Rhee SJ, Heo YR. Acanthopanax senticosus extract prepared from cultured cells decreases adiposity and obesity indices in C57BL/6J mice fed a high fat diet. J. Med. Food 7: 422–429 (2004)

    Article  CAS  Google Scholar 

  46. Liu TP, Lee CS, Liou SS, Liu IM, Cheng JT. Improvement of insulin resistance by Acanthopanax senticosus root in fructose-rich chow-fed rats. Clin. Exp. Pharmacol. P. 32: 649–654 (2005)

    Article  CAS  Google Scholar 

  47. Sambrook P, Cooper C. Osteoporosis. Lancet 367: 2010–2018 (2006)

    Article  CAS  Google Scholar 

  48. Hwang YC, Jeong IK, Ahn KJ, Chung HY. The effects of Acanthopanax senticosus extract on bone turnover and bone mineral density in Korean postmenopausal women. J. Bone Miner. Metab. 27: 584–590 (2009)

    Article  Google Scholar 

  49. Jung SM, Schumacher HR, Kim H, Kim M, Lee SH, Pessler F. Reduction of urate crystal-induced inflammation by root extracts from traditional oriental medicinal plants: Elevation of prostaglandin D2 levels. Arthritis Res. Thera. 9: R64 (2007)

    Article  Google Scholar 

  50. Liu SM, Li XZ, Huo Y, Lu F. Protective effect of extract of Acanthopanax senticosus Harms on dopaminergic neurons in Parkinson’s disease mice. Phytomedicine 19: 631–638 (2012)

    Article  CAS  Google Scholar 

  51. Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nature Rev. 4: 937–947 (2004)

    Article  CAS  Google Scholar 

  52. Santamaria PG, Nebreda AR. Deconstructing ERK signaling in tumorigenesis. Mol. Cell 38: 3–5 (2010)

    Article  CAS  Google Scholar 

  53. Pages G, Guerin S, Grall D, Bonino F, Smith A, Anjuere F, Auberger P, Pouyssegur J. Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 286: 1374–1377 (1999)

    Article  CAS  Google Scholar 

  54. Okazaki K, Sagata N. The Mos/MAP kinase pathway stabilizes c-Fos by phosphorylation and augments its transforming activity in NIH 3T3 cells. EMBO J. 14: 5048–5059 (1995)

    CAS  Google Scholar 

  55. Pellegrino MJ, Stork PJ. Sustained activation of extracellular signalregulated kinase by nerve growth factor regulates c-fos protein stabilization and transactivation in PC12 cells. J. Neurochem. 99: 1480–1493 (2006)

    Article  CAS  Google Scholar 

  56. Kim JA, Kim DK, Jin T, Kang OH, Choi YA, Choi SC, Kim TH, Nah YH, Choi SJ, Kim YH, Bae KH, Lee YM. Acanthoic acid inhibits IL-8 production via MAPKs and NF-κB in a TNF-α-stimulated human intestinal epithelial cell line. Clin. Chim. Acta 342: 193–202 (2004)

    Article  CAS  Google Scholar 

  57. Jung SK, Lim TG, Kim JE, Byun S, Kim GW, Choi JN, Lee CH, Kim BY, Lee KW, Lee HJ. Inhibitory effect of ERK1/2 and AP-1 by hyperoside isolated from Acanthopanax sessiliflorus. Food Chem. 130: 915–920 (2012)

    Article  CAS  Google Scholar 

  58. Jung SK, Cho WK, Paik JS, Yang SW. Long-term surgical outcomes of porous polyethylene orbital implants: A review of 314 cases. Brit. J. Ophthalmol. 96: 494–498 (2012)

    Article  Google Scholar 

  59. Ding M, Feng R, Wang SY, Bowman L, Lu Y, Qian Y, Castranova V, Jiang BH, Shi X. Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive, and chemotherapeutic activity. J. Biol. Chem. 281: 17359–17368 (2006)

    Article  CAS  Google Scholar 

  60. Jung SK, Lee KW, Byun S, Kang NJ, Lim SH, Heo YS, Bode AM, Bowden GT, Lee HJ, Dong Z. Myricetin suppresses UVB-induced skin cancer by targeting Fyn. Cancer Res. 68: 6021–6029 (2008)

    Article  CAS  Google Scholar 

  61. Young MR, Li JJ, Rincon M, Flavell RA, Sathyanarayana BK, Hunziker R, Colburn N. Transgenic mice demonstrate AP-1 (activator protein-1) transactivation is required for tumor promotion. P. Natl. Acad. Sci. USA 96: 9827–9832 (1999)

    Article  CAS  Google Scholar 

  62. Chen RZ, Liu ZG, Zhao JM, Chen RP, Meng FL, Zhang M, Ge WC. Antioxidant and immunobiological activity of water-soluble polysaccharide fractions purified from Acanthopanax senticosu. Food Chem. 127: 434–440 (2011)

    Article  CAS  Google Scholar 

  63. Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T, Lazar MA, O’Rahilly S, Palmer CN, Plutzky J, Reddy JK, Spiegelman BM, Staels B, Wahli W. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol. Rev. 58: 726–741 (2006)

    Article  CAS  Google Scholar 

  64. Soo Kim H, Young Park S, Kyoung Kim E, Yeon Ryu E, Hun Kim Y, Park G, Joon Lee S. Acanthopanax senticosus has a heme oxygenase-1 signaling-dependent effect on Porphyromonas gingivalis lipopolysaccharide-stimulated macrophages. J. Ethnopharmacol. 142: 819–828 (2012)

    Article  Google Scholar 

  65. Wang X, Hai CX, Liang X, Yu SX, Zhang W, Li YL. The protective effects of Acanthopanax senticosus Harms aqueous extracts against oxidative stress: Role of Nrf2 and antioxidant enzymes. J. Ethnopharmacol. 127: 424–432 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Won Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, S.K., Lee, H.J. & Lee, K.W. Bioactivities and action mechanisms of Acanthopanax species. Food Sci Biotechnol 21, 1227–1233 (2012). https://doi.org/10.1007/s10068-012-0161-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0161-7

Keywords

Navigation