Skip to main content
Log in

Modeling of microwave assisted drying of osmotically pretreated red sweet pepper (Capsicum annum L.)

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Drying kinetics modeling and effective moisture diffusivity (Deff) of osmotically dehydrated pretreated red sweet pepper (Capsicum annum L.) during microwave assisted convective drying at power levels of 0.35, 0.70, 1.05, and 1.4 W/g, air temperature of 30, 45, and 60°C, and constant air velocity of 1.5 m/s were investigated. The drying data were applied to 11 different semi-empirical mathematical models to characterize the drying kinetics and Page model provided a good agreement between experimental and predicted moisture ratio values with higher coefficient of determination (R2) and lower root mean square error (RSME) and residual sum of square (RSS). Deff decreased from 1.859×10−7 to 3.55×10−8 m2/s which is 102 to 103 times more than the previous investigations for food materials. Similarly, the activation energy decreased from 8.943 to 5.228 with decrease of drying temperature from 60 to 30°C which is due to the effect of pretreatment (osmotic dehydration). So, pretreatment can be used as criteria for faster drying thereby maintaining final product quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kordylas JM. Processing and preservation of tropical and subtropical foods. Macmillan Education Ltd., London, UK. pp. 49–71 (1991)

    Google Scholar 

  2. Sharma GP, Prasad S. Effective moisture diffusivity of garlic cloves undergoing microwave-convective drying. J. Food Eng. 65:09–617 (2004)

    Article  Google Scholar 

  3. Goksu EI, Sumnu G, Esin A. Effect of microwave on fluidised bed drying of macaroni beads. J. Food Eng. 66: 463–468 (2005)

    Article  Google Scholar 

  4. Feng H, Tang J. Microwave finish drying of diced apples in a spouted bed. J. Food Sci. 63: 679–683 (1998)

    Article  CAS  Google Scholar 

  5. Crapiste GH. Simulation of drying rates and quality changes during dehydration of foodstuffs. pp. 135–138. In: Trends in Food Enging. Lozano JE, Anon MC, Parada Arias E, Barbosa-Canovas GV (eds). Technomic Publishing Co., Lancaster, PA, USA (2000)

    Google Scholar 

  6. Andres A, Bilbao C, Fito P. Drying kinetics of apple cylinders under combined hot air-microwave dehydration. J. Food Eng. 63: 71–78 (2004)

    Article  Google Scholar 

  7. Torringa EM, Van Dijk EJ, Bartels PV. Microwave puffing of vegetables: Modelling and measurements. pp.16–19. In: Proceedings of the 31st Microwave Power Symposium Manassas, VA, USA (1996)

  8. Prabhanjan DG, Ramaswamy HS, Raghavan GSV. Microwave assisted convective air drying of thin layer carrots. J. Food Eng. 25: 283–293 (1995)

    Article  Google Scholar 

  9. Torringa E, Esveld E, Scheewe I, Berg RVD, Bartels P. Osmotic dehydration as a pre-treatment before combined microwave-hot-air drying of mushrooms. J. Food Eng. 49: 185–191 (2001)

    Article  Google Scholar 

  10. Vega-GaLvez A, Lemus-Mondaca R, Bilbao-SaıInz C, Fito P, Andres A. Effect of air drying temperature on the quality of rehydrated dried red bell pepper (var. Lamuyo). J. Food Eng. 85: 42–50 (2008)

    Article  Google Scholar 

  11. Howard LR, Smith RT, Wagner AB, Villalon B, Burns EE. Provitamin A and ascorbic acid content of fresh pepper cultivars (Capsicum annuum) and processed Jalapenos. J. Food Sci. 59: 362–365 (1994)

    Article  CAS  Google Scholar 

  12. Buffler CR. Microwave Cooking and Processing: Engineering Fundamentals for the Food Scientist. Van Nostrand Reinhold, New York, NY, USA. pp. 157–159 (1993)

    Google Scholar 

  13. Bal LM, Kar A, Satya S, Naik SN. Drying kinetics and effective moisture diffusivity of bamboo shoot slices undergoing microwave drying. Int. J. Food Sci. Tech. 45: 2321–2328 (2010)

    Article  CAS  Google Scholar 

  14. Perry RH, Green DW, Maloney JO (eds). Perry’s Chemical Engineers’ Handbook. 6th ed. Vol. 20. McGraw-Hill, New York, NY, USA. pp. 13–20 (1984)

    Google Scholar 

  15. Crank J. Mathematic of Diffusion. 2nd ed. Oxford University Press, London, UK. pp. 267–268 (1975)

    Google Scholar 

  16. Madamba PS, Driscoll RH, Buckle KA. The thin layer drying characteristics of garlic slices. J. Food Eng. 29: 75–97 (1996)

    Article  Google Scholar 

  17. Sanjuan N, Lozano M, Garcıa-Pascual P, Mulet A. Dehydration kinetics of red bell pepper (Capsicum annuum L var Jaranda). J. Sci. Food Agr. 83: 697–701 (2003)

    Article  CAS  Google Scholar 

  18. Soysal Y. Microwave drying characteristics of parsley. Biosystems Eng. 89: 167–173 (2004)

    Article  Google Scholar 

  19. Wang J, Xi YS. Drying characteristic and drying quality of carrot using a two-stage microwave process. J. Food Eng. 68: 505–511 (2005)

    Article  Google Scholar 

  20. Giri SK, Prasad S. Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. J. Food Eng. 78: 512–521 (2007)

    Article  Google Scholar 

  21. Karaaslan SN, Tuncer IK. Development of a drying model for combined microwave-fan-assisted convection drying of spinach. Biosystems Eng. 100: 44–52 (2008)

    Article  Google Scholar 

  22. Ruíz-Díaz G, Martınez-Monzo J, Fito P, Chiralt A. Modelling of dehydration-rehydration of orange slices in combined microwave/air drying. Innov. Food Sci. Emerg. 4: 203–209 (2003)

    Article  Google Scholar 

  23. Dadali G, Demirhan E, Ozbek B. Microwave heat treatment of spinach: Drying kinetics and effective moisture diffusivity. Drying Technol. 25: 1703–1712 (2007)

    Article  Google Scholar 

  24. Azzouz S, Guizani A, Jomaa W, Belghith A. Moisture diffusivity and drying kinetic equation of convective drying of grape. J. Food Eng. 55: 233–330 (2002)

    Article  Google Scholar 

  25. Aghbashlo M, Kianmehr MH, Samimi-Akhljahani H. Influence of drying conditions on the effective moisture diffusivity, energy of activation, and energy consumption during the thin-layer drying of barberries fruit (Berberidaceae). Energy Convers. Manage. 49: 2865–2871 (2008)

    Article  CAS  Google Scholar 

  26. Roca E, Broyart B, Guillard V, Guilbert S, Gontard N. Predicting moisture transfer and shelf-life of multidomain food products. J. Food Eng. 86: 74–83 (2008)

    Article  Google Scholar 

  27. Carbonell JV, Pinaga F, Yusa V, Pena JL. The dehydration of paprika with ambient heated air and the kinetics of color degradation during storage. J. Food Eng. 5: 179–193 (1986)

    Article  Google Scholar 

  28. Bon J, Simal S, Rossello C, Mulet A. Drying characteristics of hemispherical solids. J. Food Eng. 34: 109–122 (1997)

    Article  Google Scholar 

  29. Tolaba M, Suarez C. Simulation of the thin-layer drying of corn by means of the diffusional model. LWY-Food Sci. Technol. 21: 83–86 (1988)

    Google Scholar 

  30. Doymaz I. Convective air drying characteristics of thin layer carrots. J. Food Eng. 61: 359–364 (2004)

    Article  Google Scholar 

  31. Ayensu A. Dehydration of food crops using solar dryer with convective heat flow. Solar Energy 59: 121–126 (1997)

    Article  Google Scholar 

  32. Agrawal YC, Singh RP. Thin-layer drying studies on short grain rice. ASAE paper No. 77-3531, St. Joseph, MI, USA (1977)

    Google Scholar 

  33. White GM, Ross IJ, Ponelert R. Fully exposed drying of popcorn. Trans. ASAE 24: 466–475 (1981)

    Google Scholar 

  34. Akpýnar EK, Bicer Y, Cetinkaya F. Modeling of thin layer drying of parsley leaves in a convective dryer and under open sun. J. Food Eng. 75: 308–315 (2006)

    Article  Google Scholar 

  35. Yaldýz O, Ertekin C, Uzun HI. Mathematical modelling of thin layer solar drying of sultana grapes. Energy 26: 457–465 (2001)

    Article  Google Scholar 

  36. Wang CY, Singh RP. A single layer drying equation for rough rice. ASAE Paper No. 78-3001. St. Joseph, MI, USA (1978)

    Google Scholar 

  37. Togrul IT, Pehlivan D. Modeling of drying kinetics of single apricot. J. Food Eng. 58: 23–32 (2003)

    Article  Google Scholar 

  38. Verma LR, Bucklin RA, Endan JB, Wratten FT. Effects of drying air parameters on rice drying models. Trans. ASAE 28: 296–301 (1985)

    Google Scholar 

  39. Sharaf-Elden YI, Blaisdell JL, Hamdy MY. A model for ear corn drying. Trans. ASAE 23: 1261–1271 (1980)

    Google Scholar 

  40. Sacilik K, Elicin, AK. The thin layer drying characteristics of organic apple slices. J. Food Eng. 73: 281–289 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachidananda Swain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swain, S., Samuel, D.V.K., Bal, L.M. et al. Modeling of microwave assisted drying of osmotically pretreated red sweet pepper (Capsicum annum L.). Food Sci Biotechnol 21, 969–978 (2012). https://doi.org/10.1007/s10068-012-0127-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0127-9

Keywords

Navigation