Skip to main content
Log in

Microbial production of γ-linolenic acid: Submerged versus solid-state fermentations

  • Research Minireview
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

One of the major interests of lipid biotechnology is targeted on natural manufacturing of healthy oils containing polyunsaturated fatty acids. Of them, γ-linolenic acid (C18:3 n-6; GLA) as the key intermediate in the n-6 fatty acid family is involved to maintain the proper mammalian cell functions. Insufficient supply of GLA from agricultural and animal sources resulted in ‘hunting’ for appropriate microorganisms suitable to produce this essential fatty acid in high yield. Extensive studies on oleaginous lower filamentous fungi have led to development of two basic fermentation techniques for GLA production: submerged and solid-state fermentations. Each of the processes provide specific advantages in various applications depending on the GLA product form (GLA-rich oil, whole cells, and fermented mass) and might bring new prospects to fill marketing claims in food, feed, pharmaceutical, and veterinary fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Horrobin DF. Medical roles of metabolites of precursor EFA. Inform 6: 428–435 (1995)

    Google Scholar 

  2. Gill I, Valivety R. Polyunsaturated fatty acids. I. Occurrence, biological activities, and applications. Trends Biotechnol. 15: 401–409 (1997)

    Article  CAS  Google Scholar 

  3. Laoteng K, Čertík M. Biotechnological production and application of high-value microbial oils. pp. 187–215. In: Industrial Fermentation: Food Processes, Nutrient Sources, and Production Strategies. Krause J, Fleischer O (eds). Nova Science Publisher, Inc., Hauppauge, NY, USA (2010)

    Google Scholar 

  4. Čertík M, Shimizu S. Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J. Biosci. Bioeng. 87: 1–14 (1999)

    Article  Google Scholar 

  5. Ward OP, Singh A. Omega-3/6 fatty acids: Alternative sources of production. Process Biochem. 40: 3627–3652 (2005)

    Article  CAS  Google Scholar 

  6. Guschina IA, Harwood JL. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 45: 160–186 (2006)

    Article  CAS  Google Scholar 

  7. Kennedy MJ, Reader SL, Davies RJ. Fatty acid production characteristics of fungi with particular emphasis on γ-linolenic acid production. Biotechnol. Bioeng. 42: 625–634 (1993)

    Article  CAS  Google Scholar 

  8. Gema H, Kavadia A, Dimou D, Tsagou V, Komaitis M, Aggelis G. Production of γ-linolenic acid by Cunninghamella echinulata cultivated on glucose and orange peel. Appl. Microbiol. Biot. 58: 303–307 (2002)

    Article  CAS  Google Scholar 

  9. Papanikolaou S, Michael Komaitis M, Aggelis G. Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresource Technol. 95: 287–291 (2004)

    Article  CAS  Google Scholar 

  10. Fakas S, Čertík M, Papanikolaou S, Aggelis G, Komaitis M, Galiotou-Panayotou M. γ-Linolenic acid production by Cunninghamella echinulata growing on complex organic nitrogen sources. Bioresource Technol. 99: 5986–5990 (2008)

    Article  CAS  Google Scholar 

  11. Čertík M, Balteszova L, Sajbidor J. Lipid formation and γ-linolenic. Appl. Microbiol. 25: 101–105 (1997)

    Article  Google Scholar 

  12. Čertík M, Sereke Berhan S, Sajbidor J. Lipid production and fatty acid composition of selected strains belonging to Mucorales. Acta Biotechnol. 13: 193–196 (1993)

    Article  Google Scholar 

  13. Roux MP, Kock JLF, Botha A, Du Preez JC, Wells GV, Botes PJ. Mucor: A source of cocoa butter and γ-linolenic acid. World J. Microb. Biot. 10: 417–422 (1994)

    Article  CAS  Google Scholar 

  14. Kristofikova L, Rosenberg M, Vlnova A, Sajbidor J, Čertík M. Selection of Rhizopus strains for L(+)-lactic acid and γ-linolenic acid production. Folia Biol.-Prague 36: 451–455 (1991)

    CAS  Google Scholar 

  15. Kennedy MJ, Reader SL, Davies RJ. Fatty acid production characteristics of fungi with particular emphasis on γ-linolenic acid production. Biotechnol. Bioeng. 42: 625–634 (1993)

    Article  CAS  Google Scholar 

  16. Mamatha SS, Ravi R, Venkateswaran G. Medium optimization of γ-linolenic acid production in Mucor rouxii CFR-G15 using RSM. Food Bioprocess Tech. 1: 405–409 (2008)

    Article  Google Scholar 

  17. Ahmed SU, Singh SK, Pandey A, Kanjilal S, Prasad RBN. Application of response surface method for studying the role of dissolved oxygen and agitaton speed on γ-linolenic acid production. Appl. Biochem. Biotech. 152: 108–116 (2009)

    Article  CAS  Google Scholar 

  18. Ratledge C. Microbial lipids: Commercial realities or academic curiosities. pp. 1–14. In: Industrial Applications of Single Cell Oils. Kyle DJ, Ratledge C (eds). AOCS Press, Champaign, IL, USA (1992)

    Google Scholar 

  19. Nakahara T, Yokochi T, Kamisaka Y, Suzuki, O. γ-Linolenic acid from genus Mortierella. pp. 61–97. In: Industrial Applications of Single Cell Oils. Kyle DJ, Ratledge C (eds). AOCS Press, Champaign, IL, USA (1992)

    Google Scholar 

  20. Hiruta O, Yamamura K, Takebe H, Futamura T, Iinuma K, Tanaka H. Application of Maxblend fermentor for microbial processes. J. Ferment. Bioeng. 83: 79–86 (1997)

    Article  CAS  Google Scholar 

  21. Pandey A. Solid-state fermentations. Biochem. Eng. J. 13: 81–84 (2003)

    Article  CAS  Google Scholar 

  22. Conti E, Stredansky M, Stredanska S, Zanetti F. γ-Linolenic acid production by solid-state fermentation of Mucorales strains on cereals. Bioresource Technol. 76: 283–286 (2001)

    Article  CAS  Google Scholar 

  23. èertík M, Slavikova L, Masrnova S, Sajbidor J. Enhancement of nutritional value of cereals with γ-linolenic acid by fungal solid state fermentations. Food Technol. Biotech. 44: 75–82 (2006)

    Google Scholar 

  24. Jangbua P, Laoteng K, Kitsubun P, Nopharatana M, Tongta A. γ-Linolenic acid production of Mucor rouxii by solid-state fermentation using agricultural byproducts. Lett. Appl. Microbiol. 49: 91–97 (2009)

    Article  CAS  Google Scholar 

  25. Stredansky M, Conti E, Stredanska S, Zanetti F. γ-Linolenic acid production with Thamnidium elegans by solid-state fermentation on apple pomace. Bioresource Technol. 73: 41–45 (2000)

    Article  CAS  Google Scholar 

  26. Čertík M, Adamechova Z. Cereal-based bioproducts containing polyunsaturated fatty acids. Lipid Technol. 21: 250–253 (2009)

    Article  Google Scholar 

  27. Slugen D, Stredansky M, Stredanska S, Čertík M, Grego J. Process for dietetic treatment of cereal substrates using solid state fermentation of Mucoraceae filamentous fungi. Czech Patent 279043 (1994)

  28. Fakas S, Makri A, Mavromati M, Tselepi M, Aggelis G. Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresource Technol. 100: 6118–6120 (2009)

    Article  CAS  Google Scholar 

  29. Čertík M, Adamechova Z, Slavikova L. Biotechnological enrichment of cereals with polyunsaturated fatty acids. pp. 175–193. In: Biocatalysis and Molecular Engineering. Hou CT, Shaw J-F (eds). John Wiley & Sons, Hoboken, NJ, USA (2010)

    Google Scholar 

  30. Somashekar D, Venkateshwaran G, Sambaiah K, Lokesh BR. Effect of culture conditions on lipid and γ-linolenic acid production by mucoraceous fungi. Process Biochem. 38: 1719–1724 (2003)

    Article  CAS  Google Scholar 

  31. Aggelis G, Ratomahenina R, Arnaud A, Galzy P, Martin-Privat P, Perraud JP, Pina M, Graille J. Etude de I’influence des conditions de culture sur Ia teneur en acide γ-linolnique de souches de Mucor (Influence study of culture conditions on γ-linolenic acid content of strains of Mucor). Oleagineux 43: 311–317 (1988)

    CAS  Google Scholar 

  32. Chen HC, Chang CC. Production of γ-linolenic acid by the fungus Cunninghamella echinulata CCRC 31840. Biotechnol. Progr. 12: 338–341 (1996)

    Article  CAS  Google Scholar 

  33. Hannson L, Dostalek M. Effect of culture conditions on mycelian growth and production of γ-linolenic acid by the fungus Mortierella ramanniana. Appl. Microbiol. Biot. 28: 240–246 (1988)

    Google Scholar 

  34. Fakas S, Papanikolaou S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G. Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenerg 33: 573–580 (2009)

    Article  CAS  Google Scholar 

  35. Bandyopadhyay S, Ghosh S, Chaudhuri S, Bhattacharyya DK. Production of γ-linolenic acid by Rhizopus nigricans SSSD-8. J. Oleo Sci. 50: 641–647 (2001)

    Article  CAS  Google Scholar 

  36. Chatzifragkou A, Makri A, Belka A, Bellou S, Mavrou M, Mastoridou M, Mystrioti P, Onjaro G, Aggelis G, Papanikolaou S. Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36: 1097–1108 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Čertík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čertík, M., Adamechová, Z. & Laoteng, K. Microbial production of γ-linolenic acid: Submerged versus solid-state fermentations. Food Sci Biotechnol 21, 921–926 (2012). https://doi.org/10.1007/s10068-012-0121-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0121-2

Keywords

Navigation