Abstract
One of the major interests of lipid biotechnology is targeted on natural manufacturing of healthy oils containing polyunsaturated fatty acids. Of them, γ-linolenic acid (C18:3 n-6; GLA) as the key intermediate in the n-6 fatty acid family is involved to maintain the proper mammalian cell functions. Insufficient supply of GLA from agricultural and animal sources resulted in ‘hunting’ for appropriate microorganisms suitable to produce this essential fatty acid in high yield. Extensive studies on oleaginous lower filamentous fungi have led to development of two basic fermentation techniques for GLA production: submerged and solid-state fermentations. Each of the processes provide specific advantages in various applications depending on the GLA product form (GLA-rich oil, whole cells, and fermented mass) and might bring new prospects to fill marketing claims in food, feed, pharmaceutical, and veterinary fields.
Similar content being viewed by others
References
Horrobin DF. Medical roles of metabolites of precursor EFA. Inform 6: 428–435 (1995)
Gill I, Valivety R. Polyunsaturated fatty acids. I. Occurrence, biological activities, and applications. Trends Biotechnol. 15: 401–409 (1997)
Laoteng K, Čertík M. Biotechnological production and application of high-value microbial oils. pp. 187–215. In: Industrial Fermentation: Food Processes, Nutrient Sources, and Production Strategies. Krause J, Fleischer O (eds). Nova Science Publisher, Inc., Hauppauge, NY, USA (2010)
Čertík M, Shimizu S. Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J. Biosci. Bioeng. 87: 1–14 (1999)
Ward OP, Singh A. Omega-3/6 fatty acids: Alternative sources of production. Process Biochem. 40: 3627–3652 (2005)
Guschina IA, Harwood JL. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 45: 160–186 (2006)
Kennedy MJ, Reader SL, Davies RJ. Fatty acid production characteristics of fungi with particular emphasis on γ-linolenic acid production. Biotechnol. Bioeng. 42: 625–634 (1993)
Gema H, Kavadia A, Dimou D, Tsagou V, Komaitis M, Aggelis G. Production of γ-linolenic acid by Cunninghamella echinulata cultivated on glucose and orange peel. Appl. Microbiol. Biot. 58: 303–307 (2002)
Papanikolaou S, Michael Komaitis M, Aggelis G. Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresource Technol. 95: 287–291 (2004)
Fakas S, Čertík M, Papanikolaou S, Aggelis G, Komaitis M, Galiotou-Panayotou M. γ-Linolenic acid production by Cunninghamella echinulata growing on complex organic nitrogen sources. Bioresource Technol. 99: 5986–5990 (2008)
Čertík M, Balteszova L, Sajbidor J. Lipid formation and γ-linolenic. Appl. Microbiol. 25: 101–105 (1997)
Čertík M, Sereke Berhan S, Sajbidor J. Lipid production and fatty acid composition of selected strains belonging to Mucorales. Acta Biotechnol. 13: 193–196 (1993)
Roux MP, Kock JLF, Botha A, Du Preez JC, Wells GV, Botes PJ. Mucor: A source of cocoa butter and γ-linolenic acid. World J. Microb. Biot. 10: 417–422 (1994)
Kristofikova L, Rosenberg M, Vlnova A, Sajbidor J, Čertík M. Selection of Rhizopus strains for L(+)-lactic acid and γ-linolenic acid production. Folia Biol.-Prague 36: 451–455 (1991)
Kennedy MJ, Reader SL, Davies RJ. Fatty acid production characteristics of fungi with particular emphasis on γ-linolenic acid production. Biotechnol. Bioeng. 42: 625–634 (1993)
Mamatha SS, Ravi R, Venkateswaran G. Medium optimization of γ-linolenic acid production in Mucor rouxii CFR-G15 using RSM. Food Bioprocess Tech. 1: 405–409 (2008)
Ahmed SU, Singh SK, Pandey A, Kanjilal S, Prasad RBN. Application of response surface method for studying the role of dissolved oxygen and agitaton speed on γ-linolenic acid production. Appl. Biochem. Biotech. 152: 108–116 (2009)
Ratledge C. Microbial lipids: Commercial realities or academic curiosities. pp. 1–14. In: Industrial Applications of Single Cell Oils. Kyle DJ, Ratledge C (eds). AOCS Press, Champaign, IL, USA (1992)
Nakahara T, Yokochi T, Kamisaka Y, Suzuki, O. γ-Linolenic acid from genus Mortierella. pp. 61–97. In: Industrial Applications of Single Cell Oils. Kyle DJ, Ratledge C (eds). AOCS Press, Champaign, IL, USA (1992)
Hiruta O, Yamamura K, Takebe H, Futamura T, Iinuma K, Tanaka H. Application of Maxblend fermentor for microbial processes. J. Ferment. Bioeng. 83: 79–86 (1997)
Pandey A. Solid-state fermentations. Biochem. Eng. J. 13: 81–84 (2003)
Conti E, Stredansky M, Stredanska S, Zanetti F. γ-Linolenic acid production by solid-state fermentation of Mucorales strains on cereals. Bioresource Technol. 76: 283–286 (2001)
èertík M, Slavikova L, Masrnova S, Sajbidor J. Enhancement of nutritional value of cereals with γ-linolenic acid by fungal solid state fermentations. Food Technol. Biotech. 44: 75–82 (2006)
Jangbua P, Laoteng K, Kitsubun P, Nopharatana M, Tongta A. γ-Linolenic acid production of Mucor rouxii by solid-state fermentation using agricultural byproducts. Lett. Appl. Microbiol. 49: 91–97 (2009)
Stredansky M, Conti E, Stredanska S, Zanetti F. γ-Linolenic acid production with Thamnidium elegans by solid-state fermentation on apple pomace. Bioresource Technol. 73: 41–45 (2000)
Čertík M, Adamechova Z. Cereal-based bioproducts containing polyunsaturated fatty acids. Lipid Technol. 21: 250–253 (2009)
Slugen D, Stredansky M, Stredanska S, Čertík M, Grego J. Process for dietetic treatment of cereal substrates using solid state fermentation of Mucoraceae filamentous fungi. Czech Patent 279043 (1994)
Fakas S, Makri A, Mavromati M, Tselepi M, Aggelis G. Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresource Technol. 100: 6118–6120 (2009)
Čertík M, Adamechova Z, Slavikova L. Biotechnological enrichment of cereals with polyunsaturated fatty acids. pp. 175–193. In: Biocatalysis and Molecular Engineering. Hou CT, Shaw J-F (eds). John Wiley & Sons, Hoboken, NJ, USA (2010)
Somashekar D, Venkateshwaran G, Sambaiah K, Lokesh BR. Effect of culture conditions on lipid and γ-linolenic acid production by mucoraceous fungi. Process Biochem. 38: 1719–1724 (2003)
Aggelis G, Ratomahenina R, Arnaud A, Galzy P, Martin-Privat P, Perraud JP, Pina M, Graille J. Etude de I’influence des conditions de culture sur Ia teneur en acide γ-linolnique de souches de Mucor (Influence study of culture conditions on γ-linolenic acid content of strains of Mucor). Oleagineux 43: 311–317 (1988)
Chen HC, Chang CC. Production of γ-linolenic acid by the fungus Cunninghamella echinulata CCRC 31840. Biotechnol. Progr. 12: 338–341 (1996)
Hannson L, Dostalek M. Effect of culture conditions on mycelian growth and production of γ-linolenic acid by the fungus Mortierella ramanniana. Appl. Microbiol. Biot. 28: 240–246 (1988)
Fakas S, Papanikolaou S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G. Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenerg 33: 573–580 (2009)
Bandyopadhyay S, Ghosh S, Chaudhuri S, Bhattacharyya DK. Production of γ-linolenic acid by Rhizopus nigricans SSSD-8. J. Oleo Sci. 50: 641–647 (2001)
Chatzifragkou A, Makri A, Belka A, Bellou S, Mavrou M, Mastoridou M, Mystrioti P, Onjaro G, Aggelis G, Papanikolaou S. Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36: 1097–1108 (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Čertík, M., Adamechová, Z. & Laoteng, K. Microbial production of γ-linolenic acid: Submerged versus solid-state fermentations. Food Sci Biotechnol 21, 921–926 (2012). https://doi.org/10.1007/s10068-012-0121-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10068-012-0121-2