Skip to main content
Log in

Growth stimulation/inhibition effect of medicinal plants on human intestinal microbiota

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This experiment was carried out to determine the growth stimulation/inhibition effect of popular herbal extracts on intestinal microbiota and pathogenic bacteria. A paper disc agar diffusion method was employed for preliminary data. All extracts failed to promote intestinal microbiota growth around the discs. Green tea (Camellia sinensis) and Eleutherine americana did not produce inhibition zones against all intestinal microbiota, but inhibited Gram-positive pathogenic bacteria. All pure compounds, except eleutherin demonstrated antibacterial activity against all bacteria. Growth response of the substances on intestinal microbiota were further investigated by viable counts. Eleutherin from E. americana did not produce antibacterial antagonism against important groups of intestinal microbiota. In contrast, E. americana extract and eleutherin at minimal inhibitory concentration (MIC) and 4 MIC showed significant inhibition on growth of Grampositive pathogenic bacteria. The results indicated that both E. americana extract and eleutherin exerted dual beneficial effects to the host by regulating beneficial bacteria and inhibiting pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Macfarlane S, Macfarlane G. Gut Flora, Nutrition, Immunity, and Health. Blackwell Publishing, London, UK. pp. 127–235 (2003)

    Google Scholar 

  2. Montalto M, Onotrio FD, Gallo A, Cazzato A, Gasbarrini G. Intestinal microbiota and its functions. Digest Liver Dis. 3: 30–34 (2009)

    Article  Google Scholar 

  3. WHO. Antimicrobial Resistance. The World Health Organization Fact Sheet. World Health Organization, Geneva, Switzerland. pp. 1–4 (2002)

    Google Scholar 

  4. Haahr V, Peterslund N, Moller J. The influence of antimicrobial prophylaxis on the microbial and clinical findings in patients after autologous bone marrow transplantation. Scand. J. Infect. Dis. 29: 623–626 (1997)

    Article  CAS  Google Scholar 

  5. Vagionas K, Ngassapa O, Runyoro D, Graikou K, Gortzi O, Chinou I. Chemical analysis of edible aromatic plants growing in Tanzania. Food Chem. 105: 1711–1717 (2007)

    Article  CAS  Google Scholar 

  6. WHO. Traditional Medicine. The World Health Organization Fact Sheet. World Health Organization, Geneva, Switzerland. pp. 1–3 (2003)

    Google Scholar 

  7. Bandyopadhyay D, Chatterjee T, Dasgupta A, Lourduraja J, Dastidar SG. In vitro and in vivo antimicrobial action of tea: The commonest beverage of Asia. Biol. Pharm. Bull. 28: 2125–2127 (2005)

    Article  CAS  Google Scholar 

  8. Ifesan B, Hamtasin C, Mahabusarakam W, Voravuthikunchai S. Inhibitory effect of Eleutherine americana Merr. extract on Staphylococcus aureus isolated from food. J. Food Sci. 74: 331–336 (2009)

    Google Scholar 

  9. Ifesan B, Hamtasin C, Mahabusarakam W, Voravuthikunchai S. Assessment of antistaphylococcal activity of partially purified fractions and pure compounds from Eleutherine americana. J. Food Protect. 72: 354–359 (2009)

    CAS  Google Scholar 

  10. Li Y, Xu C, Zhang Q, Liu JY, Tan RX. In vitro anti-helicobacter pylori action of 30 Chinese herbal medicines used to treat ulcer diseases. J. Ethnopharmacol. 98: 329–333 (2005)

    Article  Google Scholar 

  11. Limsuwan S, Subhadhirasakul S, Voravuthikunchai S. Medicinal plants with significant activity against important pathogenic bacteria. Pharm Biol. 47: 683–689 (2009)

    Article  Google Scholar 

  12. Narayana K, Prabhakar P, Vijayalakshmi M, Venkateswarlu Y, Krishna P. Biological activity of phenylpropionic acid isolated from a terrestrial streptomycetes. Pol. J. Microbiol. 56: 191–197 (2007)

    CAS  Google Scholar 

  13. Tuncel G, Nergiz C. Antimicrobial effect of some olive phenols in a laboratory medium. Lett. Appl. Microbiol. 17: 300–302 (1993)

    Article  CAS  Google Scholar 

  14. Voravuthikunchai S, Chusri S, Suwalak S. Quercus infectoria Oliv. Pharm. Biol. 46: 367–372 (2008)

    Article  CAS  Google Scholar 

  15. Puupponen-Pimia R, Nohynek L, Meier C, Kahkonen M, Heinonen M, Kopia A, Oksman-Caldentey KM. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 90: 494–507 (2001)

    Article  CAS  Google Scholar 

  16. Jeong EY, Jeon JH, Kim HW, Kim MG, Lee HS. Antimicrobial activity of leptospermone and its derivatives against human intestinal bacteria. Food Chem. 115: 1401–1404 (2009)

    Article  CAS  Google Scholar 

  17. Park B, Kim J, Lee S, Kim KS, Takeoka GR, Ahn Y, Kim JH. Selective growth-inhibiting effects of compounds identified in Tabebuia impetiginosa inner bark on human intestinal bacteria. J. Agr. Food Chem. 53: 1152–1157 (2005)

    Article  CAS  Google Scholar 

  18. Jeong EY, Jeon JH, Lee CH, Lee HS. Antimicrobial activity of catechol isolated from Diospyros kaki Thumb. roots and its derivatives toward intestinal bacteria. Food Chem. 115: 1006–1010 (2009)

    Article  CAS  Google Scholar 

  19. Hervert-Hernandez D, Pintado C, Rotgu R, Goni I. Stimulatory role of grape pomace polyphenols on Lactobacillus acidophilus growth. Int. J. Food Microbiol. 136: 119–122 (2009)

    Article  CAS  Google Scholar 

  20. Mahabusarakam W, Hemtasin C, Chakthong S, Voravuthikunchai SP, Olawumi IB. Naphthoquinones, anthraquinones, and naphthalene derivatives from the bulbs of Eleutherine americana. Planta Med. 40: 23–27 (2009)

    Google Scholar 

  21. Krieg NR, Holt JG, Murray RGE, Brenner DJ, Bryant MP, Moulder JW. Bergey’s Manual of Systematic Bacteriology. Williams & Wilkins Baltimore, London, UK. pp. 548–667 (1984)

    Google Scholar 

  22. Forbes B, Shan D, Weissfield A. Bailey & Scott’s Diagnostic Microbiology. Mosby, St. Louis, MO, USA. pp. 127–205 (2002)

    Google Scholar 

  23. Holdeman LV, Moore WEC. Anaerobe Laboratory Manual. Virginia Polytechnic Institute, Blacksburg, VA, USA. pp. 32–69 (1977)

    Google Scholar 

  24. Woodward EJ. The effect of traditionally prepared herbal decoctions on the growth of indigenous oral microbiota. J. Sci. 3: 464–468 (1999)

    Google Scholar 

  25. Almajano MP, Carbo R, Ropez-Jimenez JA, Gordon MH. Antioxidant and antimicrobial activities of tea infusions. Food Chem. 108: 55–63 (2008)

    Article  CAS  Google Scholar 

  26. Lee H, Jenner A, Low C, Lee Y. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res. Microbiol. 157: 876–884 (2006)

    Article  CAS  Google Scholar 

  27. Gury J, Barthelmebs L, Tran NP, Davies C, Cavin JF. Cloning, detection, and characterization of padR, the transcriptional repressor of the phenolic acid decarboxylase encoding padA gene of Lactobacillus plantarum. Appl. Environ. Microb. 70: 2146–2153 (2004)

    Article  CAS  Google Scholar 

  28. Puupponen-Pimi R, Nohynek L, Hartmann-Schmidlin S, Heinonen M, Riihinen K. Berry phenolics selectively inhibit the growth of intestinal pathogens. J. Appl. Microbiol. 98: 991–1000 (2005)

    Article  Google Scholar 

  29. Lim MY, Jeon JH, Jeong EY, Lee CH, Lee HS. Antimicrobial activity of 5-hydroxy-1,4-naphthoquinone isolated from Caesalpinia sappan toward intestinal bacteria. Food Chem. 100: 1254–1258 (2007)

    Article  CAS  Google Scholar 

  30. Kamijo M, Kanazawa T, Funaki M, Nishizawa M, Yamagishi T. Effects of Rosa rugosa petals on intestinal bacteria. Biosci. Biotech. Bioch. 72: 773–777 (2008)

    Article  CAS  Google Scholar 

  31. Sung BK, Kim MK, Lee WH, Lee DH, Lee HS. Growth responses of Cassia obtusifolia toward human intestinal bacteria. Fitoterapia 75: 505–509 (2004)

    Article  CAS  Google Scholar 

  32. Alberto M, Gmez-Cordov C, de Nadra M. Metabolism of gallic acid and catechin by Lactobacillus hilgardii from wine. J. Agr. Food Chem. 52: 6465–6469 (2004)

    Article  CAS  Google Scholar 

  33. Garcia-Ruiz A, Bartolom B, Martinez-Rodriguez A, Pueyo E, Martin-Alvarez P, Moreno-Arribas M. Potential of phenolic compounds for controlling lactic acid bacteria growth in wine. Food Control 19: 835–841 (2008)

    Article  CAS  Google Scholar 

  34. Selma MV, Espin JC, Tomas-Barberan FA. Interaction between phenolics gut microbiota: Role in human health. J. Agr. Food Chem. 57: 6485–6501 (2009)

    Article  CAS  Google Scholar 

  35. Ridwan B, Koning C, Besselink M, Timmerman H, Brouwer E, Verhoef J. Antimicrobial activity of a multispecies probiotic (Ecologic 641) against pathogens isolated from infected pancreatic necrosis. Lett. Appl. Microbiol. 46: 61–67 (2008)

    CAS  Google Scholar 

  36. Spinler JK, Taweechotipatr M, Rognerud CL, Ou CN, Tumwasorn SV. Human-derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. Anaerobe 14: 166–171 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supayang Piyawan Voravuthikunchai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phoem, A.N., Voravuthikunchai, S.P. Growth stimulation/inhibition effect of medicinal plants on human intestinal microbiota. Food Sci Biotechnol 21, 739–745 (2012). https://doi.org/10.1007/s10068-012-0096-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0096-z

Keywords

Navigation