Skip to main content
Log in

Volatile chemical and carotenoid profiles in watermelons [Citrullus vulgaris (Thunb.) Schrad (Cucurbitaceae)] with different flesh colors

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Twelve watermelon [Citrullus vulgaris (Thunb.) Schrad (Cucurbitaceae)] cultivars with different flesh colors were analyzed by HPLC, GC-FID, and GC-MS for their differences in carotenoid, soluble sugar, organic acid, and flavor. Results showed that all-trans violaxanthin, 9-cis-violaxanthin, and luteoxanthin were the main carotenoid esters in watermelons with yellow flesh. However, watermelons with red flesh were rich in all-trans lycopene and their cis-isomers. High concentrations of β-carotene and pro-lycopenes were found in watermelon with orange-yellow flesh. Large variations in the sucrose concentration were observed among the different watermelons. Sucrose and/or fructose were the dominant sugars, while citric acid and malic acid were the main organic acids in watermelon flesh. Limonene was detected in the watermelon flesh of all investigated genotypes. Interestingly, partial correlation analysis of the chemical concentrations revealed 2 significant (p<0.01) positive correlations between β-ionone and β-carotene, and between (E)-geranyl acetone and prolycopenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Britton G, Liaaen-Jensen S, Pfander H. Carotenoids Handbook. 1st ed. Birkhäuser, Basel, Germany. p. 676 (2004)

    Book  Google Scholar 

  2. Grotewold E. The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 57: 761–780 (2006)

    Article  CAS  Google Scholar 

  3. Lewinsohn E, Sitrit Y, Bar E, Azulay Y, Ibdah M, Meir A, Yosef E, Zamir D, Tadmor Y. Not just colors-carotenoid degradation as a link between pigmentation and volatile in tomato and watermelon fruit. Trends Food Sci. Tech. 16: 407–415 (2005)

    Article  CAS  Google Scholar 

  4. Lewinsohn E, Sitrit Y, Bar E, Azulay Y, Meir A, Zamir D, Tadmor Y. Carotenoid pigmentation affects the volatile composition of tomato and watermelon fruits, as revealed by comparative genetic analyses. J. Agr. Food Chem. 53: 3142–3148 (2005)

    Article  CAS  Google Scholar 

  5. Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR. Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276: 1872–1874 (1997)

    Article  CAS  Google Scholar 

  6. Ibdah M, Azulay Y, Portnoy V, Wasserman B, Bar E, Meir A, Burger Y, Hirschberg J, Schaffer AA, Katzir N, Tadmor Y, Lewinsohn E. Functional characterization of CmCCD1, a carotenoid cleavage dioxygenase from melon. Phytochemistry 67: 1579–1589 (2006)

    Article  CAS  Google Scholar 

  7. Huang FC, Horváth G, Molnárb P, Turcsic E, Delic J, Schraderd J, Sandmanne G, Schmidta H, Schwaba W. Substrate promiscuity of RdCCD1, a carotenoid cleavage oxygenase from Rosa damascena. Phytochemistry 70: 457–464 (2009)

    Article  CAS  Google Scholar 

  8. Schwartz SH, Qin X, Loewen MC. The biochemical characterization of two carotenoid cleavage enzymes from arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J. Biol. Chem. 279: 46940–46945 (2004)

    Article  CAS  Google Scholar 

  9. Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 14: 1232–1238 (2004)

    Article  CAS  Google Scholar 

  10. Bouvier F, Dogbo O, Camara B. Biosynthesis of the food and cosmetic plant pigment bixin (annatto). Science 300: 2089–2091 (2003)

    Article  CAS  Google Scholar 

  11. Mahattanatawee K, Rouseff R, Valim MF, Naim M. Identification and volatile impact of norisoprenoids in orange juice. J. Agr. Food Chem. 53: 393–397 (2005)

    Article  CAS  Google Scholar 

  12. Iijima Y, Gang DR, Fridman E, Lewinsohn E, Pichersky E. Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol. 134: 370–379 (2004)

    Article  CAS  Google Scholar 

  13. Ilg A, Beyer P, Al-Babili S. Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis. FEBS J. 276: 736–747 (2009)

    Article  CAS  Google Scholar 

  14. Hashizume T, Shimamoto I, Harushima Y, Yui M, Sato T, Imai T, Hirai M. Construction of a linkage map for watermelon (Citrullus lanatus (Thunb.) Matsum and Nakai) using random amplified polymorphic DNA (RAPD). Euphytica 90: 265–273 (1996)

    Article  CAS  Google Scholar 

  15. Alexander L, Grierson D. Ethylene biosynthesis and action in tomato: A model for climacteric fruit ripening. J. Exp. Bot. 53: 2039–2055 (2002)

    Article  CAS  Google Scholar 

  16. Beaulieu JC, Lea JM. Characterization and semiquantitative analysis of volatiles in seedless watermelon varieties using solid-phase microextraction. J. Agr. Food Chem. 54: 7789–7793 (2006)

    Article  CAS  Google Scholar 

  17. Bartolozzi F, Bertazza G, Bassi D, Cristoferi G. Simultaneous determination of soluble sugars and organic acids as their trimethylsilyl derivatives in apricot fruits by gas-liquid chromatography. J. Chromatogr. A 758: 99–107 (1997)

    Article  Google Scholar 

  18. Liu Q, Xu J, Liu YZ, Zhao XL, Deng XX, Guo LL, Gu JQ. A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). J. Exp. Bot. 58: 4161–4171 (2007)

    Article  CAS  Google Scholar 

  19. Wurst S, Van Dam NM, Monroy F, Biere A, Van der Putten WH. Intraspecific variation in plant defense alters effects of root herbivores on leaf chemistry and aboveground herbivore damage. J. Chem. Ecol. 34: 1360–1367 (2008)

    Article  CAS  Google Scholar 

  20. van Den Dool H, Kratz PD. A generalization of the retention index system including linear temperature programmed gas — liquid partition chromatography. J. Chromatogr. A 11: 463–471 (1963)

    Article  Google Scholar 

  21. Beaulieu JC, Grimm CC. Identification of volatile compounds in cantaloupe at various developmental stages using solid phase microextraction. J. Agr. Food Chem. 49: 1345–1352 (2001)

    Article  CAS  Google Scholar 

  22. Kemp T, Knavel D, Stoltz L. 3,6-Nonadien-1-ol from Citrullus vulgaris and Cucumus melo. Phytochemistry 13: 1167–1170 (1974)

    Article  CAS  Google Scholar 

  23. Arthur CL, Pratt K, Motlagh S, Pawliszyn J, Belardi RP. Environmental analysis of organic compounds in water using solid phase micro extraction. J. High Res. Chromatog. 15: 741–744 (1992)

    Article  CAS  Google Scholar 

  24. Giuliano G, Al-Babili S, von Lintig J. Carotenoid oxygenases: Cleave it or leave it. Trends Plant Sci. 8: 145–149 (2003)

    Article  CAS  Google Scholar 

  25. Du X, Finn CE, Qian MC. Volatile composition and odor-activity value of thornless ‘Black Diamond’ and ‘Marion’ blackberries. Food Chem. 119: 1127–1134 (2010)

    Article  CAS  Google Scholar 

  26. Kloer DP, Schulz GE. Structural and biological aspects of carotenoid cleavage. Cell Mol. Life Sci. 63: 2291–2303 (2006)

    Article  CAS  Google Scholar 

  27. Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone, and geranylacetone. Plant J. 40: 882–892 (2004)

    Article  CAS  Google Scholar 

  28. Locas CP, Yaylayan VA. Origin and mechanistic pathways of formation of the parent furan — A food toxicant. J. Agr. Food Chem. 52: 6830–6836 (2004)

    Article  CAS  Google Scholar 

  29. Lee HS, Castle WS, Coates GA. Characterization of carotenoids in juice of red navel orange (Cara Cara). J. Agr. Food Chem. 49: 2563–2568 (2001)

    Article  CAS  Google Scholar 

  30. de Faria AF, Hasegawa PN, Chagas EA, Pio R, Purgatto E, Mercadante AZ. Cultivar influence on carotenoid composition of loquats from Brazil. J. Food Compos. Anal. 22: 196–203 (2009)

    Article  Google Scholar 

  31. Cross J, Gabai M, Lifshitz A. A comparative study of the carotenoid pigments in juice of Shamouti, Valencia, and Washington oranges, three varieties of Citrus sinensis. Phytochemistry 11: 303–308 (1972)

    Article  Google Scholar 

  32. Qin J, Yeum KJ, Johnson EJ, Krinsky NI, Russell RM, Tang G. Determination of 9-cis β-carotene and ζ-carotene in biological samples. J. Nutr. Biochem. 19: 612–618 (2008)

    Article  CAS  Google Scholar 

  33. Schierle J, Bretzel W, Bühler I, Hess NFD, Steiner K, Schüep W. Content and isomeric ratio of lycopene in food and human blood plasma. Food Chem. 59: 459–465 (1997)

    Article  CAS  Google Scholar 

  34. Lee MT, Chen BH. Separation of lycopene and its cis isomers by liquid chromatography. Chromatographia 54: 613–617 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Zhang, H., Dai, Z. et al. Volatile chemical and carotenoid profiles in watermelons [Citrullus vulgaris (Thunb.) Schrad (Cucurbitaceae)] with different flesh colors. Food Sci Biotechnol 21, 531–541 (2012). https://doi.org/10.1007/s10068-012-0068-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0068-3

Keywords

Navigation