Skip to main content
Log in

Functional properties of different Korean sweet potato varieties

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Eight different varieties of Korean sweet potatoes (SPs) were investigated to develop new healthy foods. The purple-fleshed SPs, ‘Shinjami’ and ‘Borami’, the orange-fleshed SPs, ‘Juwhangmi’ and ‘Shinwhangmi’, and the white/cream-fleshed dry-type SPs, ‘Shinyulmi’, ‘Shinchunmi’, ‘Yeonwhangmi’, and ‘Jeungmi’, were used. Alcohol insoluble solids (AIS), total dietary fiber (TDF), anthocyanin, carotenoid, and phenolic compounds contents for SP powders vary significantly (p<0.05) between different varieties. The TDF, anthocyanin, and the total phenolic compounds of SPs had the highest values in the purple-fleshed SPs (10.11–10.87%, 2.43–3.35 mg/g, and 454.13–638.79%, respectively) and the lowest values in the white/cream-fleshed dry-type SPs. The carotenoids of the orange-fleshed SPs were higher in ‘Juwhangmi’ than in ‘Shinwhangmi’. The color differences among the purple-fleshed SPs were 3–4 times larger than those of other SPs. The antioxidant activities of the purple-fleshed SPs were higher than those of other SPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Food and Agricultural Organization. Sweet potatoes production. Available from: http://www.fao.org. Accessed Jul. 7, 2011.

  2. Bovell-Benjamin AC. Sweet potato: A review of its past, present, and future in human nutrition. Adv. Food Nutr. Res. 52: 1–59 (2007)

    Article  CAS  Google Scholar 

  3. Cambie RC, Ferguson LR. Potential functional foods in the traditional Maori diet. Mutat. Res. 523–524: 109–117 (2003)

    Google Scholar 

  4. Kim KE, Kim SS, Lee YT. Physicochemical properties of flours prepared from sweet potatoes with different flesh colors. J. Korean Soc. Food Sci. Nutr. 39: 1476–1480 (2010)

    Article  CAS  Google Scholar 

  5. Ravindran V, Ravindran G, Sivakanesan R, Rajaguru SB. Biochemical and nutritional assessment of tubers from 16 cultivars of sweet potato (Ipomoea batatas L.). J. Agr. Food Chem. 43: 2646–2651 (1995)

    Article  CAS  Google Scholar 

  6. Rumbaoa RGO, Cornago DF, Geronimo IM. Phenolic content and antioxidant capacity of Philippine sweet potato (Ipomoea batatas) varieties. Food Chem. 113: 1133–1138 (2009)

    Article  CAS  Google Scholar 

  7. Oki T, Masuda M, Furuta S, Nishiba Y, Terahara N, Suda I. Involvement of anthocyanins and other phenolic compounds in radical-scavenging activity of purple-fleshed sweet potato cultivars. J. Food Sci. 67: 1752–1756 (2002)

    Article  CAS  Google Scholar 

  8. Teow CC, Truong V, McFeeters RF, Thompson RL, Pecoto KV, Yencho GC. Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem. 103: 829–838 (2007)

    Article  CAS  Google Scholar 

  9. Kalt W. Effects of production and processing factors on major fruit and vegetable antioxidants. J. Food Sci. 70: R11–R19 (2005)

    Article  CAS  Google Scholar 

  10. Song J, Chung MN, Kim JT, Chi HY, Son JR. Quality characteristics and antioxidative activities in various cultivars of sweet potato. Korean J. Crop Sci. 50(S): 141–146 (2005)

    Google Scholar 

  11. Lee JS, Jeong BC, Ahn YS, Chung MN, Kim HS. Color stability according to storage period of purple sweet potato products. Korean J. Crop Sci. 51(S): 204–208 (2006)

    Google Scholar 

  12. Lee JS, Ahn YS, Kim HS, Chung MN, Boo HO. Proximate composition and minerals, phenolics, anthocyanins pigment characteristics on the parts of sweet potato. Korean J. Int. Agric. 19: 196–204 (2007)

    Google Scholar 

  13. Lee JS, Ahn YS, Chung MN, Kim HS. Biological activity of varieties, isolation, and purification of antioxidants components in sweet potato. Korean J. Breed. Sci. 39: 296–301 (2007)

    Google Scholar 

  14. Ahmed M, Akter MS, Eun JB. Peeling, drying temperatures, and sulphite-treatment affect physicochemical properties, and nutritional quality of sweet potato flour. Food Chem. 121: 112–118 (2010)

    Article  CAS  Google Scholar 

  15. AOAC. Official Methods of AOAC Int. 17th ed. Method 991.43. Association of Official Analytical Chemists, Gaithersburg, MD, USA (2000)

    Google Scholar 

  16. Dubois M, Gilles K, Hamilton J, Rebers P, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356 (1956)

    Article  CAS  Google Scholar 

  17. Lee KA, Shin MS, Ahn SY. The changes of pectic substances in sweet potato cultivars during baking. Korean J. Food Sci. Technol. 17: 421–425 (1985)

    CAS  Google Scholar 

  18. Shin M, Ahn S. Action of crude amylolytic enzymes extracted from sweet potatoes and amylolytic enzymes on the sweet potato starches. Korean J. Food Sci. Technol. 18: 431–436 (1986)

    CAS  Google Scholar 

  19. Chandler LA, Schwartz SJ. Isomerization and losses of trans-β-carotene in sweet potatoes as affected by processing treatments. J. Agr. Food Chem. 36: 129–133 (1988)

    Article  CAS  Google Scholar 

  20. Jung ST, Rhim JW, Kang SG. Quality properties and carotenoid pigments of yellow sweet potato puree. J. Korean Soc. Food Sci. Nutr. 27: 596–602 (1998)

    CAS  Google Scholar 

  21. Jung CS, Park YJ, Kwon YC, Suh HS. Variation of anthocyanin content in color — Soybean collections. Korean J. Crop Sci. 41: 302–307 (1996)

    Google Scholar 

  22. Elisia I, Hu C, Popovich DG, Kitts DD. Antioxidant assessment of an anthocyanin-enriched blackberry extract. Food Chem. 101: 1052–1058 (2007)

    Article  CAS  Google Scholar 

  23. Kim DO, Jeong SW, Lee CY. Antioxidant capacity of phenoilc phytochemical from various cultivars of plums. Food Chem. 81: 321–326 (2003)

    Article  CAS  Google Scholar 

  24. Huang YC, Chang YH, Shao YY. Effects of genotype and treatment on the antioxidant activity of sweet potato in Taiwan. Food Chem. 98: 529–538 (2005)

    Article  Google Scholar 

  25. Picha DH. HPLC determination of sugars in raw and baked sweet potatoes. J. Food Sci. 50: 1189–1190 (1985)

    Article  CAS  Google Scholar 

  26. Park SJ, Kim JM, Kim JE, Jung SH, Park KH, Shin M. Characteristics of sweet potato powders from eight Korean varieties. Korean J. Food Cookery Sci. 27: 19–29 (2011)

    Google Scholar 

  27. Shin MS, Ahn SY. Textural properties of dry and moist type sweet potatoes. J. Korean Agric. Chem. Soc. 30: 315–322 (1987)

    Google Scholar 

  28. Kim DD, Yoo B. Rheological behaviors of hydroxypropylated sweet potato starches influenced by guar, locust bean, and xanthan gums. Starch/Stärke 62: 584–591 (2010)

    Article  CAS  Google Scholar 

  29. Shih MC, Kuo CC, Chiang W. Effects of drying and extrusion on color, chemical composition, antioxidant activities, and mitogenic response of spleen lymphocytes of sweet potatoes. Food Chem. 117: 114–121 (2009)

    Article  CAS  Google Scholar 

  30. Mei X, Mu TH, Han JJ. Composition and physicochemical properties of dietary fiber extracted from residues of 10 varieties of sweet potato by a sieving method. J. Agr. Food Chem. 58: 7305–7310 (2010)

    Article  CAS  Google Scholar 

  31. Kim SJ, Ehim JW, Jung ST. Carotenoid contents of yellow sweet potatoes. Korean J. Food Sci. Technol. 29: 218–222 (1997)

    Google Scholar 

  32. Huang AS, Tanudjaja L, Lum D. Content of α-, β-carotene, and dietary fiber in 18 sweet potato varieties grown in Hawaii. J. Food Compos. Anal. 12: 147–151 (1999)

    Article  CAS  Google Scholar 

  33. Liu SC, Lin JT, Yang DJ. Determination of cis- and trans-α-and β-carotenoids in Taiwanese sweet potatoes (Ipomoea batatas (L.) Lam.) harvested at various times. Food Chem. 116: 605–610 (2009)

    Article  CAS  Google Scholar 

  34. Shi Z, Bassa IA, Gabriel SL, Francis FJ. Anthocyanin of sweet potato: Ipomoea batatas. J. Food Sci. 57: 755–760 (1992)

    Article  CAS  Google Scholar 

  35. Philpott M, Gould KS, Lim C, Ferguson LR. In situ and in vitro antioxidant activity of sweet potato anthocyanins. J. Agr. Food Chem. 52: 1511–1513 (2004)

    Article  CAS  Google Scholar 

  36. Odake K, Terahara N, Saito N, Toki K, Honda T. Chemical structure of 2 anthocyanins from purple sweet potato, Ipomoea batatas. Phytochemistry 31: 2127–2130 (1992)

    Article  CAS  Google Scholar 

  37. Furuta S, Suda I, Nishiba Y, Yamakawa O. High tert-butylperoxyl radical scavenging activities of sweet potato cultivars with purple flesh. Food Sci. Technol. Int. 4: 33–35 (1998)

    Article  CAS  Google Scholar 

  38. Hayase F, Kato H. Antioxidative components of sweet potatoes. J. Nutr. Sci. Vitaminol. 30: 37–46 (1984)

    Article  CAS  Google Scholar 

  39. Von Elbe JH, Schwartz SJ. Colorants. pp. 673–693. In: Food Chemistry. Fennema OR (ed). 3rd ed. Marcel Dekker, Inc., New York, NY, USA (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malshick Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JM., Park, SJ., Lee, CS. et al. Functional properties of different Korean sweet potato varieties. Food Sci Biotechnol 20, 1501–1507 (2011). https://doi.org/10.1007/s10068-011-0208-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-011-0208-1

Keywords

Navigation