Skip to main content
Log in

Antioxidative activities of mao feng tea (Camellia spp.) and kamtae (Ecklonia cava) extracts and their effects on structured lipid from corn and perilla oil

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

In the study, solvent extracts of kamtae (Ecklonia cava) and mao feng tea (Camillia sinensis) were used for obtaining different fractions of organic solvents (diethyl ether, butanol, and ethyl acetate) and the extracted fractions were studied for their antioxidative activities. The total phenolic contents of the mao feng tea ranged from 1.44 to 5.97 mM GAE/g while kamtae ranged from 1.13 to 4.41 mM GAE/g, respectively. Among them, ethyl acetate fraction showed the highest content of phenolic compounds, resulting in Trolox equivalent antioxidant capacity (TEAC) values as 1,554.54 (from mao feng tea) and 1,097.63 mM Trolox E/g (from kamtae). Also, ethyl acetate fractions from mao feng tea showed the highest DPPH (89.27 RSC%), superoxide anion scavenging activity (46.58%), and ferric reducing antioxidant power (FRAP) (242.2 mg GAE/g) while ethyl acetate fractions from kamtae (K-EA) showed the highest DPPH (82.23 RSC%), superoxide anion scavenging activity (28.82%), and FRAP (162.43 mg GAE/g) among the obtained fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gülcin İ, Sat İG, Beydemir S, Elmastas M, Küfrevioğlu OI. Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chem. 87: 393–400 (2004)

    Article  Google Scholar 

  2. Seppanen CM, Song Q, Csallany AS. The antioxidant functions of tocopherol and tocotrienol homologues in oils, fats, and food systems. J. Am. Oil Chem. Soc. 87: 469–481 (2010)

    Article  CAS  Google Scholar 

  3. Grice HC. Safety evaluation of butylated hydroxytoluene (BHT) in the liver, lung, and gastrointestinal tract. Food Chem. Toxicol. 24: 1127–1130 (1986)

    Article  Google Scholar 

  4. Wichi HP. Enhanced tumor development by butylated hydrooxyanisole (BHA) from the prospective of effect on forestomach and oesophageal squamous epithelium. Food Chem. Toxicol. 26: 717–723 (1988)

    Article  Google Scholar 

  5. Shahidi F, Zhong Y. Antioxidants: Regulatory status. Vol. I, pp. 491–512. In: Bailey’s Industrial Oil and Fat Products. 6th ed. Shahidi F (ed). John Wiley & Sons, New York, NY, USA (2005)

    Chapter  Google Scholar 

  6. Heo SJ, Park EJ, Lee KW, Jeon YJ. Antioxidant activities of enzymatic extract from brown seaweeds. Bioresource Technol. 96: 1613–1623 (2005)

    Article  CAS  Google Scholar 

  7. Athukorala Y, Kim KN, Jeon YJ. Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food Chem. Toxicol. 44: 1065–1074 (2006)

    Article  CAS  Google Scholar 

  8. Li Y, Qian AJ, Ryu B, Lee SH, Kim MM, Kim SK. Chemical components and its antioxidant properties in vitro: An edible marine brown alga, Ecklonia cava. Bioorg. Med. Chem. 17: 1963–1973 (2009)

    Article  CAS  Google Scholar 

  9. Matsukawa R, Dubinsky Z, Kishimoto E, Masak K, Masuda Y, Takeuchi T, Chihara M, Yamamto Y, Niki E, Karube I. A comparison of screening methods for antioxidant activity in seaweeds. J. Appl. Phycol. 9: 29–35 (1997)

    Article  CAS  Google Scholar 

  10. Rusak D, Komes D, Likic S, Horzic D, Kovac M. Phenolic content and antioxidative capacity of green and white tea extracts depending on extraction conditions and the solvent used. Food Chem. 110: 852–858 (2008)

    Article  CAS  Google Scholar 

  11. Dufrene CJ, Farnworth ER. A review of latest research findings on the health promotion properties of tea. J. Nutr. Biochem. 12: 404–421 (2001)

    Article  Google Scholar 

  12. Frei B, Higdon JV. Antioxidant activity of tea polyphenols in vivo: Evidence from animal studies. J. Nutr. 133: 3275S–3284S (2003)

    CAS  Google Scholar 

  13. Silva RC, Cotting LN, Poltronieri TP, Balcão VM, De Almeida DB, Goncalves LAG, Grimaldi R, Gioielli LA. The effects of enzymatic interesterication on the physical-chemical properties of blends of lard and soybean oil. Food Sci. Technol. 42: 1275–1282 (2009)

    CAS  Google Scholar 

  14. Osborn HT, Akoh CC. Structured lipids-novel fats with medical, nutraceutical, and food applications. Compr. Rev. Food Sci. F. 3: 110–120 (2002)

    Article  Google Scholar 

  15. Lee JH, Lee KT, Akoh CC, Chung SK, Kim MR. Antioxidant evaluation and oxidative stability of structured lipids from extra virgin olive oil and conjugated linoleic acid. J. Agr. Food Chem. 54: 5416–5421 (2006)

    Article  CAS  Google Scholar 

  16. Tsaknis J, Lalas S. Extraction and identification of natural antioxidant from Sideritis Euboea (Mountain tea). J. Agr. Food Chem. 53: 6375–6381 (2005)

    Article  CAS  Google Scholar 

  17. Netzel M, Netzel G, Tian Q, Schwartz S, Konczak I. Native Australian fruits- A novel source of antioxidants for food. Innovat. Food Sci. Emerg. 8: 339–346 (2007)

    Article  CAS  Google Scholar 

  18. Mazor D, Greenberg L, Shamir D, Meyerstein D, Meyerstein N. Antioxidant properties of bucillamine: Possible mode of action. Biochem. Bioph. Res. Co. 349: 1171–1175 (2006)

    Article  CAS  Google Scholar 

  19. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Evans CR. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231–1237 (1999)

    Article  CAS  Google Scholar 

  20. Roudsari MH, Chang PR, Pegg RB, Tyler RT. Antioxidant capacity of bioactives extracted from canola meal by subcritical water, ethanolic and hot water extraction. Food Chem. 114: 717–726 (2009)

    Article  Google Scholar 

  21. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: The FRAP assay. Anal. Biochem. 239: 70–76 (1996)

    Article  CAS  Google Scholar 

  22. AOCS. Official Methods and Recommended Practices of the AOAC. 4th ed. Method Cd 8-53, Cd 18-90, Cd 19-90. American Oil Chemists’ Society Press, Champaign, IL, USA (1990)

    Google Scholar 

  23. Prior R, Wu X, Schaich K. Standardized methods for the determination of antioxidant of antioxidant capacity and phenolics in foods and dietary supplements. J. Agr. Food Chem. 53: 4290–4302 (2005)

    Article  CAS  Google Scholar 

  24. Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J. Agr. Food Chem. 53: 1841–1856 (2005)

    Article  CAS  Google Scholar 

  25. Amarowicz R, Naczk M, Shahidi F. Antioxidant activity of various fractions of non-tannin phenolics of canola hulls. J. Agr. Food Chem. 48: 2755–2759 (2000)

    Article  CAS  Google Scholar 

  26. Halliwell B, Gutteridge JMC. Free radicals, ageing, and disease. p. 416. In: Free Radicals in Biology and Medicine. Clarendon Press, London, UK (1996)

    Google Scholar 

  27. Soares JR, Dins TC, Cunha AP, Almeida LM. Antioxidants activity of some extracts of Thymus zygis. Free Radical Res. 26: 469–478 (1997)

    Article  CAS  Google Scholar 

  28. Shin HC, Hwang HJ, Kang KJ, Lee BH. An antioxidative and antiinflammatory agent for potential treatment of osteoarthritis from Ecklonia cava. Arch. Pharm. Res. 29: 165–171 (2006)

    Article  CAS  Google Scholar 

  29. Senevirathne M, Kim SH, Siriwardhana N, Ha JH, Lee KW, Jeon YJ. Antioxidant potential of Eclonia cavaon reactive oxygen species scavenging, metal chelating reducing power, and lipid peroxidation inhibition. Food Sci. Tech. Int. 12: 27–38 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Teak Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, K., Shin, JA., Lee, JH. et al. Antioxidative activities of mao feng tea (Camellia spp.) and kamtae (Ecklonia cava) extracts and their effects on structured lipid from corn and perilla oil. Food Sci Biotechnol 20, 1399–1406 (2011). https://doi.org/10.1007/s10068-011-0192-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-011-0192-5

Keywords

Navigation