Advertisement

Food Science and Biotechnology

, 20:1315 | Cite as

Impact of cranberry juice and proanthocyanidins on the ability of Escherichia coli to form biofilms

  • Paola Andrea Pinzón-Arango
  • Kerrie Holguin
  • Terri Anne CamesanoEmail author
Research Article

Abstract

The effects of cranberry juice cocktail (CJC) and proanthocyanidins (PACs) on biofilm formation were investigated. Escherichia coli strain HB101pDC1 and nonfimbriated strain HB101 were grown in 10 wt% CJC or 120 μg/mL PACs for 12 consecutive cultures. Biofilm formation was investigated by incubating bacteria in 96-well polyvinyl chloride (PVC) plates and studying the optical density of the solution using the crystal violet method. We suspect that biofilm formation occurred due to non-specific interactions between the bacteria and the polymer. Both P-fimbriated E. coli HB101pDC1 and the non-fimbriated strain HB101 formed biofilms. E. coli strain HB101pDC1 formed a thicker and more mature biofilm. Cranberry juice inhibited biofilm formation after the first culture; however, for bacteria grown in PACs, a decrease in biofilm formation was observed with increasing number of cultures. The inhibitory effect was reversible. These results demonstrate that CJC is more effective than isolated PACs at preventing biofilm formation, possibly suggesting that other cranberry compounds also play a role in anti-biofilm activity.

Keywords

urinary tract infection Vaccinium macrocarpon cranberry juice cocktail biofilm formation P-fimbriated Escherichia coli 

References

  1. 1.
    Stickler DJ. Bacterial biofilms in patients with indwelling urinary catheters. Nat. Clin. Pract. Urol. 5: 598–608 (2008)CrossRefGoogle Scholar
  2. 2.
    Warren JW, Platt R, Thomas RJ, Rosner B, Kass EH. Antibiotic irrigation and catheter-associated urinary-tract infections. New Engl. J. Med. 299: 570–573 (1978)CrossRefGoogle Scholar
  3. 3.
    Warren JW. Catheter-associated urinary tract infections. Int. J. Antimicrob. Ag. 17: 299–303 (2001)CrossRefGoogle Scholar
  4. 4.
    Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet 358: 135–138 (2001)CrossRefGoogle Scholar
  5. 5.
    Avorn J, Monane M, Gurwitz JH, Glynn RJ, Choodnovskiy I, Lipsitz LA. Reduction of bacteriuria and pyuria after ingestion of cranberry juice. J. Am. Med. Assoc. 271: 751–754 (1994)CrossRefGoogle Scholar
  6. 6.
    Bodet C, Grenier D, Chandad F, Ofek I, Steinberg D, Weiss EI. Potential oral health benefits of cranberry. Crit. Rev. Food Sci. 48: 672–680 (2008)CrossRefGoogle Scholar
  7. 7.
    Weiss EI, Lev-Dor R, Kashamn Y, Goldhar J, Sharon N, Ofek I. Inhibiting interspecies coaggregation of plaque bacteria with a cranberry juice constituent. J. Am. Dent. Assoc. 129: 1719–1723 (1998)Google Scholar
  8. 8.
    Zhang L, Ma J, Pan K, Go VLW, Chen J, You W-C. Efficacy of cranberry juice on Helicobacter pylori infection: A double-blind, randomized placebo-controlled trial. Helicobacter 10: 139–145 (2005)CrossRefGoogle Scholar
  9. 9.
    Koo H, Duarte S, Murata RM, Scott-Anne K, Gregoire S, Watson GE, Singh AP, Vorsa N. Influence of cranberry proanthocyanidins on formation of biofilms by Streptococcus mutans on saliva-coated apatitic surface and on dental caries development in vivo. Caries Res. 44: 116–126 (2010)CrossRefGoogle Scholar
  10. 10.
    Ofek I, Goldhar J, Zafriri D, Lis H, Adar R, Sharon N. Anti-Escherichia coli adhesin activity of cranberry and blueberry juices. New Engl. J. Med. 324: 1599 (1991)Google Scholar
  11. 11.
    Foo LY, Lu Y, Howell AB, Vorsa N. A-type proanthocyanidin trimers from cranberry that inhibit adherence of uropathogenic Pfimbriated Escherichia coli. J. Nat. Prod. 63: 1225–1128 (2000)CrossRefGoogle Scholar
  12. 12.
    Shmuely H, Burger O, Neeman I, Yahav J, Samra Z, Niv Y, Sharon N, Weiss E, Athamna A, Tabak M, Ofek I. Susceptibility of Helicobacter pylori isolates to the antiadhesion activity of a high-molecular-weight constituent of cranberry. Diagnos. Microbiol. Infect. Dis. 50: 231–235 (2004)CrossRefGoogle Scholar
  13. 13.
    Pinzon-Arango PA, Liu Y, Camesano TA. Role of cranberry on bacterial adhesion forces and implications for Escherichia coli-uroepithelial cell attachment. J. Med. Food 12: 259–270 (2009)CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Tao Y, Pinzon-Arango PA, Camesano TA. Role of cranberry juice cocktail on inhibition of urinary tract infections (abstract no. COLL-244). In: Abstracts: 240th National Meeting American Chemical Society. August 22–26, Boston Convention Center, Boston, MA, USA. The American Chemical Society, Washington, DC, USA (2010)Google Scholar
  15. 15.
    Howell AB, Reed JD, Krueger CG, Winterbottom R, Cunningham DG, Leahy M. A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochemistry 66: 2281–2291 (2005)CrossRefGoogle Scholar
  16. 16.
    Zafriri D, Ofek I, Adar R, Pocino M, Sharon N. Inhibitory activity of cranberry juice on adherence of type 1 and type P fimbriated Escherichia coli to eucaryotic cells. Antimicrob. Agents Ch. 33: 92–98 (1989)Google Scholar
  17. 17.
    Liu Y, Black MA, Caron L, Camesano TA. Role of cranberry juice on molecular-scale surface characteristics and adhesion behavior of Escherichia coli. Biotechnol. Bioeng. 93: 297–305 (2006)CrossRefGoogle Scholar
  18. 18.
    Eydelnant IA, Tufenkji N. Cranberry derived proanthocyanidins reduce bacterial adhesion to selected biomaterials. Langmuir 24: 10273–10281 (2008)CrossRefGoogle Scholar
  19. 19.
    Johnson-White B, Buquo L, Zeinali M, Ligler FS. Prevention of nonspecific bacterial cell adhesion in immunoassays by use of cranberry juice. Anal. Chem. 78: 853–857 (2006)CrossRefGoogle Scholar
  20. 20.
    Pachler J, Frimodt-Moller C. A comparison of prelubricated hydrophilic and non-hydrophilic polyvinyl chloride catheters for urethral catheterization. Brit. J. Urol. Int. 83: 767–769 (1999)CrossRefGoogle Scholar
  21. 21.
    Prior RL, Fan E, Ji H, Howell A, Nio C, Payne MJ, Reed J. Multilaboratory validation of a standard method for quantifying proanthocyanidins in cranberry powders. J. Sci. Food Agr. 90: 1473–1478 (2010)CrossRefGoogle Scholar
  22. 22.
    Goodacre R, Berkeley R. The use of pyrolysis-mass spectroscopy to detect the fimbrial adhesive antigen F41 from Escherichia coli HB101 (pSLM204). J. Anal. Appl. Pyrol. 22: 19–28 (1991)CrossRefGoogle Scholar
  23. 23.
    Connell I, Agace W, Klemm P, Schembri M, Marild S, Svanborg C. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. P. Natl. Acad. Sci. USA 93: 9827–9832 (1996)CrossRefGoogle Scholar
  24. 24.
    O’Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R. Genetic approaches to study of biofilms. Method. Enzymol. 310: 91–109 (1999)CrossRefGoogle Scholar
  25. 25.
    O’Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis. Mol. Microbiol. 28: 449–461 (1998)CrossRefGoogle Scholar
  26. 26.
    Huang CT, Peretti SW, Bryers JD. Use of flow cell reactors to quantify biofilm formation kinetics. Biotechnol. Tech. 6: 193–198 (1992)CrossRefGoogle Scholar
  27. 27.
    Reisner A, Haagensen JA, Schembri MA, Zechner EL, Molin S. Development and maturation of Escherichia coli K-12 biofilms. Mol. Microbiol. 48: 933–946 (2003)CrossRefGoogle Scholar
  28. 28.
    Vidal O, Longin R, Prigent-Combaret C, Dorel C, Hooreman M, Lejeune P. Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: Involvement of a new ompR allele that increases curli expression. J. Bacteriol. 180: 2442–2449 (1998)Google Scholar
  29. 29.
    O’Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54: 49–79 (2000)CrossRefGoogle Scholar
  30. 30.
    Hedlund H, Hjelmas K, Jonsson O, Klarskov P, Talja M. Hydrophilic versus non-coated catheters for intermittent catheterization. Scand. J. Urol. Nephrol. 35: 49–53 (2001)CrossRefGoogle Scholar
  31. 31.
    Dee KC, Puleo DA, Bizios R. An Introduction to Tissue-Biomaterial Interactions. Vol. 1. John Wiley & Sons, Inc., Hoboken, NJ, USA. pp. 37–51 (2002)CrossRefGoogle Scholar
  32. 32.
    Steinberg D, Feldman M, Ofek I, Weiss EI. Effect of a high-molecular-weight component of cranberry on constituents of dental biofilm. J. Antimicrob. Chemoth. 54: 86–89 (2004)CrossRefGoogle Scholar
  33. 33.
    Labrecque J, Bodet C, Chandad F, Grenier D. Effects of a high-molecular-weight cranberry fraction on growth, biofilm formation, and adherence of Porphyromonas gingivalis. J. Antimicrob. Chemoth. 58: 439–443 (2006)CrossRefGoogle Scholar
  34. 34.
    Steinberg D, Feldman M, Ofek I, Weiss EI. Cranberry high molecular weight constituents promote Streptococcus sobrinus desorption from artificial biofilm. Int. J. Antimicrob. Ag. 25: 247–251 (2005)CrossRefGoogle Scholar
  35. 35.
    Bodet C, Chandad F, Grenier D. Anti-inflammatory activity of a high-molecular-weight cranberry fraction on macrophages stimulated by lipopolysaccharides from periodontopathogens. J. Dent. Res. 85: 235–239 (2006)CrossRefGoogle Scholar
  36. 36.
    Liu P, Liu Y, Lu Z, Zhu J, Dong J, Pang D, Shen P, Qu S. Study on biological effect of La3+ on Escherichia coli by atomic force microscopy. J. Inorg. Biochem. 98: 68–72 (2004)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Netherlands 2011

Authors and Affiliations

  • Paola Andrea Pinzón-Arango
    • 1
  • Kerrie Holguin
    • 1
  • Terri Anne Camesano
    • 1
    Email author
  1. 1.Department of Chemical EngineeringWPI Life Sciences and Bioengineering Center at Gateway ParkWorcesterUSA

Personalised recommendations