Skip to main content
Log in

In vitro characterization study of Bacillus mojavensis KJS-3 for a potential probiotic

  • Research Note
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The identification and characterization of Bacillus mojavensis KJS-3 was performed by in vitro tests. A 16S rDNA sequence and phylogenetic tree demonstrated that this isolate belongs to the B. mojavensis group. B. mojavensis KJS-3 supplies nutrients by synthesizing several vitamins. B. mojavensis KJS-3 produces α-amylase and protease. B. mojavensis KJS-3 is cultured well under aerobic conditions without gas production. B. mojavensis KJS-3 allows for assimilation of cholesterol and bile salt hydrolase activity. Finally, adhesion experiments using Caco-2 cells revealed that the adherence of B. mojavensis KJS-3 to Caco-2 cells was approximately 51.2±8.14%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salminen S, Wright A von. Current probiotics-safety assured? Microb. Ecol. Health. D. 10: 68–77 (1998)

    Article  Google Scholar 

  2. Fuller R. Probiotics in man and animals. J. Appl. Bacteriol. 66: 365–378 (1989)

    CAS  Google Scholar 

  3. Lilly DM, Stillwell RH. Probiotics: Growth promoting factors produced by microorganisms. Science 147: 747–748 (1965)

    Article  CAS  Google Scholar 

  4. Bacon CW, Hinton DM. Endophytic and biological control potential of Bacillus mojavensis and related species. Biol. Control 23: 274–284 (2002)

    Article  CAS  Google Scholar 

  5. Roberts MS, Nakumora LK, Cohan FM. Bacillus mojavensis sp. Nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. Int. J. Syst. Bacteriol. 44: 256–264 (1994)

    Article  CAS  Google Scholar 

  6. Bacon CW, Hinton DM. Symptomless endophytic colonization of maize by Fusarium moniliforme. Can. J. Botany 74: 1195–1202 (1996)

    Article  Google Scholar 

  7. Bacon CW, Hinton DM. Potential for control of seedling blight of wheat caused by Fusarium graminearum and related species using the bacterial endophyte Bacillus mojavensis. Biocontrol Sci. Techn. 17: 81–94 (2007)

    Article  Google Scholar 

  8. Choi SM, Park MH, Jung TS, Moon KH, Kim KM, Kang JS. Characterization of Bacillus mojavensis KJS-3 for industrial applications. Arch. Pharm. Res. 34: 289–298 (2011)

    Article  CAS  Google Scholar 

  9. Kieser T, Bibb MJ, Buttner KF, Chater KF, Hopwood DA. Practical Streptomyces Genetics. The John Innes Foundation, London, UK. pp. 169–171 (2000)

    Google Scholar 

  10. Kim KM, Kim MJ, Kim DH, Park YS, Kang JS. Characterization of Bacillus polyfermenticus KJS-2 as a probiotic. J. Microbiol. Biotechn. 19: 1013–1018 (2009)

    Article  CAS  Google Scholar 

  11. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped Blast and psi-blast: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402 (1997)

    Article  CAS  Google Scholar 

  12. Hompson JD, Higgins DG, Gibson TJ. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalizes, and weight matrix choice. Nucleic Acids Res. 22: 4673–4680 (1994)

    Article  Google Scholar 

  13. Kumar S, Tamura K, Jakobsen IB, Nei M. MEGA: 2: Molecular evolutionary genetics analysis software. Arizona State University, Tempe, AZ, USA (2001)

    Google Scholar 

  14. Kim P, Kim CH. A study on the simultaneous analysis of fat-soluble vitamins in food stuffs and vitamin products by high performance liquid chromatography. J. Korean Chem. Soc. 33: 46–54 (1988)

    Google Scholar 

  15. Korea Food & Drug Administration. Detection and quantitaion of vitamins in foods. Available from: http://www.kfda.go.kr/fa/index.do?nMenuCode=23&mode=view&boardSeq=14001. Accessed Feb. 14, 2011.

  16. Korea Food & Drug Administration. Detection and quantitaion of digestive enzymes in foods. Available from: http://www.kfda.go.kr/fa/index.do?nMenuCode=23&mode=view&boardSeq=14001. Accessed Feb. 14, 2011.

  17. Durham HE. A simple method for demonstrating the production of gas by bacteria. Brit. Med. J. 1: 1387 (1898)

    Article  CAS  Google Scholar 

  18. Jeong HY, Kim TH, Park JS, Kim KT, Paik HD. Antioxidative and cholesterol-reducing activity of Bacillus polyfermenticus SCD. Korean J. Biotechnol. Bioeng. 18: 371–376 (2003)

    Google Scholar 

  19. Klaenhammer TR, Kleeman EG. Growth characteristics, bile sensitivity, and freeze damage in colonial variants of Lactobacillus acidophilus. Appl. Environ. Microb. 41: 1461–1467 (1981)

    CAS  Google Scholar 

  20. Jun KD, Kim HJ, Lee KH, Paik HD, Kang JS. Characterization of Bacillus polyfermenticus SCD as a probiotic. Korean J. Microbiol. Biotechn. 30: 359–366 (2002)

    CAS  Google Scholar 

  21. Casciari JJ, Riordan NH, Schmidt TL, Meng XL, Jackson JA, Riordan HD. Cytotoxicity of ascorbate, lipoic acid, and other antioxidants in hollow fibre in vitro tumours. Brit. J. Cancer 84: 1544–1550 (2001)

    Article  CAS  Google Scholar 

  22. Kwon SH, Lee PC, Lee EG, Chang YK, Chang N. Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate. Enzyme Microb. Tech. 26: 209–215 (2000)

    Article  CAS  Google Scholar 

  23. Ouwehand AC, Tölkkö S, Salminen S. The effect of digestive enzymes on the adhesion of probiotic bacteria in vitro. J. Food Sci. 66: 856–859 (2001)

    Article  CAS  Google Scholar 

  24. Daniel YCF, Richard DM. Rapid procedure for the detection of acid and gas production by bacterial cultures. Appl. Microbiol. 20: 527–528 (1970)

    Google Scholar 

  25. Hayward AC. Detection of gas production from glucose by heterofermentative lactic acid bacteria. J. Gen. Microbiol. 16: 9–15 (1957)

    CAS  Google Scholar 

  26. Gilliland SE, Nelson CR, Maxwell C. Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microb. 49: 377–381 (1985)

    CAS  Google Scholar 

  27. Grunewald KK. Serum cholesterol levels in rats fed skim milk fermented by Lactobacillus acidophilus. J. Food. Sci. 47: 2078–2079 (1982)

    Article  CAS  Google Scholar 

  28. Panigrahi P, Tall BD, Russell RG, Detolla LJ, Morris JG Jr. Development of an in vitro model for study of non-O1 Vibrio cholerae virulence using Caco-2 cells. Infect. Immun. 58: 3415–3424 (1990)

    CAS  Google Scholar 

  29. Lopez M, Li N, Kataria J, Russell M, Neu J. Live and ultravioletinactivated Lactobacillus rhamnosus GG decrease flagellin-induced interleukin-8 production in Caco-2 cells1-3. J. Nutr. 138: 2264–2268 (2008)

    Article  CAS  Google Scholar 

  30. Lee NK, Park JS, Park E, Paik HD. Adherence and anticarcinogenic effects of Bacillus polyfermenticus SCD in the large intestine. Lett. Appl. Microbiol. 44: 274–278 (2007)

    Article  Google Scholar 

  31. Gueimonde M, Jalonen L, He F, Hiramatsu M, Salminen S. Adhesion and competitive inhibition and displacement of human enteropathogens by selected lactobacilli. Food Res. Int. 39: 467–471 (2006)

    Article  CAS  Google Scholar 

  32. Lee YK, Puong KY, Ouwehand AC, Salminen S. Displacement of bacterial pathogens from mucus and Caco-2 cell surface by lactobacilli. J. Med. Microbiol. 52: 925–930 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Seon Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K.M., Jung, T.S., Ok, S. et al. In vitro characterization study of Bacillus mojavensis KJS-3 for a potential probiotic. Food Sci Biotechnol 20, 1155–1159 (2011). https://doi.org/10.1007/s10068-011-0158-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-011-0158-7

Keywords

Navigation