Antioxidant and α-glucosidase inhibitory activities of different solvent extracts of skullcap (Scutellaria baicalensis)

Abstract

In this study, different solvent extracts of skullcap (Scutellaria baicalensis) were assayed for their total phenol content (TPC), antioxidant activity [determined as DPPH radical scavenging activity, superoxide dismutase (SOD)-like activity, oxygen radical absorbance capacity (ORAC) assay, and comet assay], and α-glucosidaseinhibitory activity. The TPC of skullcap ranged from 9.06 mg/g gallic acid equivalents (GAE) for acetone extract (AE) to 91.8 mg/g GAE for methanol extract (ME). AE, which had a low TPC, exhibited the highest DPPH radical scavenging activity and SOD-like activity. TPC positively correlated with the ORAC assay (r=0.96, p<0.001). All skullcap extracts significantly reduced the hydrogen peroxide-induced DNA damage in human leukocytes. ME with a high TPC and ORAC value showed the highest α-glucosidase inhibition. The difference in the biological activities of the extracts may be due to the differences in their chemical structure or polarity. Therefore, the results obtained indicate that might be a potential source of compounds with health-protective effects. ME, in particular, might be a prospective therapeutic agent for diabetes.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Amos AF, McCarty DJ, Zimmet P. The rising global burden of diabetes and its complications: Estimates and projections to the year 2010. Diabetic Med. 14: 1–85 (1997)

    Article  Google Scholar 

  2. 2.

    Kamtchouing P, Kahpui SM, Djomeni Dzeufiet PD, T’edong L, Asongalem EA, Dioma T. Anti-diabetic activity of methanol/methylene chloride stem bark extracts of Terminalia superba and Canarium schweinfurthii on streptozotocin-induced diabetic rats. J. Ethnopharmacol. 104: 306–309 (2006)

    Article  CAS  Google Scholar 

  3. 3.

    Kamalakkannan N, Prince PS. Rutin improves the antioxidant status in streptozotocin-induced diabetic rat tissues. Mol. Cell. Biochem. 293: 211–219 (2006)

    Article  CAS  Google Scholar 

  4. 4.

    Bhandari MR, Nilubon JA, Gao H, Kawabata J. α-Glucosidase and aamylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata Haw.). Food Chem. 106: 247–252 (2008)

    Article  CAS  Google Scholar 

  5. 5.

    Borges de Melo E, Gomes ADS, Carvalho I. α- and β-Glucosidase inhibitors: Chemical structure and biological activity. Tetrahedron 62: 10277–10302 (2006)

    Article  CAS  Google Scholar 

  6. 6.

    Madar Z. The effect of acarbose and miglitol (bay-m-1099) on postprandial glucose levels following ingestion of various sources of starch by nondiabetic and streptozotocin-induced diabetic rats. J. Nutr. 119: 2023–2029 (1989)

    CAS  Google Scholar 

  7. 7.

    Niwa T, Doi U, Osawa T. Inhibitory activity of corn-derived bisamide compounds against α-glucosidase. J. Agr. Food Chem. 51: 90–94 (2003)

    Article  CAS  Google Scholar 

  8. 8.

    Matsui T, Ueda T, Oki T, Sugita K, Terahara N, Matsumoto K. α-Glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigment with potent inhibitory activity. J. Agr. Food Chem. 49: 1948–1951 (2001)

    Article  CAS  Google Scholar 

  9. 9.

    Valiathan MS. Healing plants. Curr. Sci. 75: 1122–1127 (1998)

    Google Scholar 

  10. 10.

    National Nutrition Council. Finnish Nutrition Recommendations. Committee report 1998:7. Ministry of Agriculture and Forestry, Helsinki, Finland. p. 9 (1999)

    Google Scholar 

  11. 11.

    Nijveldt RJ, Van Nood E, Van Hoorn DEC, Boelens PG, Van Norren K, Van Leeuwen PAM. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 74: 418e–425e (2001)

    Google Scholar 

  12. 12.

    Song Y, Manson JE, Buring JE, Sesso HD, Liu S. Associations of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: A prospective study and cross-sectional analysis. J. Am. Coll. Nutr. 24: 376e–384e (2005)

    Google Scholar 

  13. 13.

    Heo H, Shin Y, Cho W, Choi YS, Kim H, Kim Kwon Y. Memory improvement in ibotenic acid induced model rats by extracts of Scutellaria baicalensis. J. Ethnopharmacol. 122: 20–27 (2009)

    Article  Google Scholar 

  14. 14.

    Konoshima T, Kokumai M, Kozuka M, Iinuma M, Mizuno M, Tanaka T. Studies on inhibitors of skin tumor promotion. XI. Inhibitory effects of flavonoids from Scutellaria baicalensis on Epstein-Barr virus activation and their anti-tumor-promoting activities. Chem. Pharm. Bull. 40: 531–533 (1992)

    CAS  Google Scholar 

  15. 15.

    Kubo M, Kimura Y, Odani T, Tani T, Namba K. Studies on Scutellariae radix. Part II. The antibacterial substance. Planta Med. 43: 194–201 (1981)

    Article  CAS  Google Scholar 

  16. 16.

    Kubo M, Matsuda H, Tanaka M, Kimura Y, Okuda H, Higashino M. Studies on Scutellariae radix. VII. Anti-arthritic and antiinflammatory actions of methanolic extract and flavonoid components from Scutellariae radix. Chem. Pharm. Bull. 32: 2724–2729 (1984)

    CAS  Google Scholar 

  17. 17.

    Gao Z, Huang K, Yang X, Xu H. Free radical scavenging and antioxidant activities of favonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim. Biophys. Acta 1472: 643–650 (1999)

    CAS  Google Scholar 

  18. 18.

    Good Kitzberger CS Jr. Sma∧nia A, Pedrosa RC, Ferreira SRS. Antioxidant and antimicrobial activities of shiitake (Lentinula edodes) extracts obtained by organic solvents and supercritical fluids. J. Food Eng. 80: 631–638 (2007)

    Article  Google Scholar 

  19. 19.

    Kim GN, Shin JG, Jang HD. Antioxidant and antidiabetic activity of dangyuja (Citrus grandis Osbeck) extract treated with Aspergillus saitoi. Food Chem. 117: 35–41 (2009)

    Article  CAS  Google Scholar 

  20. 20.

    Kurihara H, Fukami H, Asami S, Totoda Y, Nakai M, Shibata H. Effects of oolong tea on plasma antioxidative capacity in mice loaded with restraint stress assessed using the oxygen radical absorbance capacity (ORAC) assay. Biol. Pharmacol. Bull. 27: 1093–1098 (2004)

    Article  CAS  Google Scholar 

  21. 21.

    Park JH, Park EJ. Influence of iron-overload on DNA damage and its repair in human leukocyte in vitro. Mutat. Res. 718: 56–61 (2010)

    Google Scholar 

  22. 22.

    Singh PN, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levelsof DNA damage in individual cells. Exp. Cell Res. 175: 184–191 (1988)

    Article  CAS  Google Scholar 

  23. 23.

    Mai TT, Thu NN, Tien PG, Chuyen NV. α-Glucosidase inhibitory and antioxidant activities of Vietnamese edible plants and their relationships with polyphenol contents. J. Nutr. Sci. Vitaminol. 53: 267–276 (2007)

    Article  CAS  Google Scholar 

  24. 24.

    Li HB, Wong CC, Cheng KW, Chen F. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. Lebensm. -Wiss. Technol. 41: 385–390 (2008)

    CAS  Google Scholar 

  25. 25.

    Pinelo M, Rubilar M, Jerez M, Sineiro J, Nunez MJ. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agr. Food Chem. 53: 2111–2117 (2005)

    Article  CAS  Google Scholar 

  26. 26.

    Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 74: 2157–2184 (2004)

    Article  CAS  Google Scholar 

  27. 27.

    Yamaguchi T, Takamura H, Matoba T, Terao J. HPLC method for evaluation of the free radical-scavenging activity of foods by using 1, 1-diphenyl-2-picrylhydrazyl. Biosci. Biotech. Bioch. 62: 1201–1204 (1998)

    Article  CAS  Google Scholar 

  28. 28.

    Zhang LL, Lin YM, Zhou HC, Wei SD, Chen JH. Condensed tannins from mangrove species Kandelia candel and Rhizophora mangle and their antioxidant activity. Molecules 15: 420–431 (2010)

    Article  CAS  Google Scholar 

  29. 29.

    Kim SJ, Han D, Moon KD, Rhee JS. Measurement of superoxide dismutase-like activity of natural antioxidants. Biosci. Biotech. Bioch. 59: 822–826 (1995)

    Article  CAS  Google Scholar 

  30. 30.

    Cao G, Prior RL. Measurement of oxygen radical absorbance capacity in biological samples. Method. Enzymol. 299: 50–62 (1999)

    Article  CAS  Google Scholar 

  31. 31.

    Ou B, Hampsch-Woodill M, Prior R. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent. J. Agr. Food. Chem. 49: 4619–4626 (2001)

    Article  CAS  Google Scholar 

  32. 32.

    Kim MJ, Park E. Antioxidative and antigenotoxic effect of omija (Schizandra chinensis B.) extracted with various solvents. J. Korean Soc. Food Sci. Nutr. 39: 487–493 (2010)

    Article  CAS  Google Scholar 

  33. 33.

    Kratchanova M, Denev P, Ciz M, Lojek A, Mihailov A. Evaluation of antioxidant activity of medicinal plants containing polyphenol compounds. Comparison of two extraction systems. Acta Biochem. Pol. 57: 229–234 (2010)

    CAS  Google Scholar 

  34. 34.

    Hamada H, Hiramatsu M, Edamatsu R, Mori A. Free radical scavenging action of baicalein. Arch. Biochem. Biophys. 306: 261–266 (1993)

    Article  CAS  Google Scholar 

  35. 35.

    Gao D, Sakurai K, Katoh M, Chen J, Ogiso T. Inhibition of microsomal lipid peroxidation by baicalein: A possible formation of an iron-baicalein complex. Biochem. Mol. Biol. Int. 39: 215–225 (1996)

    CAS  Google Scholar 

  36. 36.

    Mohanty G, Mohanty J, Nayak A K, Mohanty S, Dutta SK. Application of comet assay in the study of DNA damage and recovery in rohu (Labeo rohita) fingerlings after an exposure to phorate, an organophosphate pesticide. Ecotoxicology Epub 09. Dec DOI: 10.1007/s10646-010-0580-2 (2010)

  37. 37.

    Halliwell B, Gutteridge JMC. Role of free radicals and catalytic metal ions in human disease: An overview. Method. Enzymol. 186: 1–85 (1990)

    Article  CAS  Google Scholar 

  38. 38.

    Chen X, Nishida H, Konishi T. Baicalin promoted the repair of DNA single strand breakage caused by H2O2 in cultured NIH3T3 fibroblasts. Biol. Pharm. Bull. 26: 282–284 (2003)

    Article  CAS  Google Scholar 

  39. 39.

    Kim MH, Jo SH, Jang HD, Lee MS, Kwon YI. Antioxidant activity and α-glucosidase inhibitory potential of onion (Allium cepa L.) extracts. Food Sci. Biotechnol. 19: 159–164 (2010)

    Article  CAS  Google Scholar 

  40. 40.

    de Souse E, Zanatta L, Seifriz I, Creczymaki-Pasa TB, Pizzolatti MG, Szpoganicz B, Silva FR. Hypoglycemic effect and antioxidant potential of kaempfrol-3,7-O-(α)-dirhamnoside from Bauhinia forficate leaves. J. Nat. Prod. 67: 829–832 (2004)

    Article  Google Scholar 

  41. 41.

    Hanamura T, Hagiwara T, Kawagishi H. Structural and functional characterization of polyphenols isolated from acerola (Malpighia emargiata DC.) fruit. Biosci. Biotech. Bioch. 69: 280–286 (2005)

    Article  CAS  Google Scholar 

  42. 42.

    Hu ML, Wang L, Kim HS, Jin CW, Cho DH. Antioxidant and antidiabetes activity of extracts from Machilus thunbergii S. et Z. Korean J. Medicinal Crop Sci. 18: 34–39 (2010)

    Google Scholar 

  43. 43.

    Jhang L, Li J, Hogan S, Chung H, Welbaum GE, Zhou K. Inhibitory effect of raspberries on starch digestive enzyme and their antioxidant properties and phenolic composition. Food Chem. 119: 592–599 (2010)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eunju Park.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, JH., Kim, RY. & Park, E. Antioxidant and α-glucosidase inhibitory activities of different solvent extracts of skullcap (Scutellaria baicalensis). Food Sci Biotechnol 20, 1107 (2011). https://doi.org/10.1007/s10068-011-0150-2

Download citation

Keywords

  • Scutellaria baicalensis
  • total phenolic content
  • antioxidant activity
  • α-glucosidase inhibitory activity
  • comet assay