Skip to main content
Log in

Integrity and cell-monolayer permeability of chitosan nanoparticles in simulated gastrointestinal fluids

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this study was to assess the integrity and intestinal permeability of chitosan nanoparticles (CNPs) in simulated gastrointestinal fluids (SGIF). The cell-associated and transported chitosan was quantified and visualized after incubation of the CNPs with Caco-2 cell monolayer with/without SGIF treatment. In order to establish the role of proteins in the SGIF, CNPs were incubated with 4 proteins having different isoelectric points (pI). CNPs incubated with the fluids did not attach to the cell monolayer in contrast to the intact CNPs. Negatively-charged protein formed the complex with CNPs leading to particle size increase, but protected CNPs from disintegration. In contrary, positively-charged protein interacted with cross-linker causing disintegration of CNPs. CNPs incubated with the fluids did not attach to the cell monolayer in contrast to the intact CNPs. The results suggested that the surface charges of CNPs and proteins play a critical role in structural changes of CNPs in biological environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Desai KGH, Park HJ. Recent developments in microencapsulation of food ingredients. Dry. Technol. 23: 1361–1394 (2005)

    Article  CAS  Google Scholar 

  2. Flanagan J, Singh H. Microemulsions: A potential delivery system for bioactives in food. Crit. Rev. Food Sci. 46: 221–237 (2006)

    Article  CAS  Google Scholar 

  3. Müller G. Oral delivery of protein drugs: Driver for personalized medicine. Curr. Issues Mol. Biol. 13: 13–24 (2010)

    Google Scholar 

  4. Rieux A, Fievez V, Garinot M, Schneider YJ, Prat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J. Control. Release 116: 1–27 (2006)

    Article  Google Scholar 

  5. Shahiwala A, Vyas TK, Amiji MM. Nanocarriers for systemic and mucosal vaccine delivery. Recent Pat. Drug Deliv. Formul. 1: 1–9 (2007)

    Article  CAS  Google Scholar 

  6. Jia X, Chen X, Xu Y, Han X, Xu Z. Tracing transport of chitosan nanoparticles and molecules in Caco-2 cells by fluorescent labeling. Carbohyd. Polym. 78: 323–329 (2009)

    Article  CAS  Google Scholar 

  7. Lin YH, Chung CK, Chen CT, Liang HF, Chen SC, Sung HW. Preparation of nanoparticles composed of chitosan/poly-γ-glutamic acid and evaluation of their permeability through Caco-2 cells. Biomacromolecules 6: 1104–1112 (2005)

    Article  CAS  Google Scholar 

  8. Ma Z, Lim LY. Uptake of chitosan and associated insulin in Caco-2 cell monolayers: A comparison between chitosan molecules and chitosan nanoparticles. Pharm. Res. 20: 1812–1819 (2003)

    Article  CAS  Google Scholar 

  9. Sandri G, Bonferoni MC, Rossi S, Ferrari F, Gibin S, Zambito Y, Colo GD, Caramella C. Nanoparticles based on N-trimethylchitosan: Evaluation of absorption properties using in vitro (Caco-2 cells) and ex vivo (excised rat jejunum) models. Eur. J. Pharm. Biopharm. 65: 68–77 (2007)

    Article  CAS  Google Scholar 

  10. Yin L, Ding J, He C, Cui L, Tang C, Yin C. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials 30: 5691–5700 (2009)

    Article  CAS  Google Scholar 

  11. Lin YH, Mi FL, Chen CT, Chang WC, Peng SF, Liang HF, Sung HW. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules 8: 146–152 (2007)

    Article  CAS  Google Scholar 

  12. Ma Z, Lim TM, Lim LY. Pharmacological activity of peroral chitosan-insulin nanoparticles in diabetic rats. Int. J. Pharm. 293: 271–280 (2005)

    Article  CAS  Google Scholar 

  13. Pan Y, Li YJ, Zhao HY, Zheng JM, Xu H, Wei G, Hao JS, Cui FD. Bioadhesive polysaccharide in protein delivery system: Chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int. J. Pharm. 249: 139–147 (2002)

    Article  CAS  Google Scholar 

  14. Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res. 24: 2198–2206 (2007)

    Article  CAS  Google Scholar 

  15. Sonaje K, Lin YH, Juang JH, Wey SP, Chen CT, Sung HW. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials 30: 2329–2339 (2009)

    Article  CAS  Google Scholar 

  16. Hirano S, Seino H, Akiyama Y, Nonaka I. Chitosan: A bibocompatible material for oral and intravenous administrations. pp. 283–290. In: Progress in Biomedical Polymers. Gebelein CG, Dunn RL (eds). Plenum Press, New York, NY, USA (1990)

    Google Scholar 

  17. Jintapattanakit A, Junyaprasert VB, Mao S, Sitterberg J, Bakowsky U, Kissel T. Peroral delivery of insulin using chitosan derivatives: A comparative study of polyelectrolyte nanocomplexes and nanoparticles. Int. J. Pharm. 342: 240–249 (2007)

    Article  CAS  Google Scholar 

  18. Nimesh S, Thibault MM, Lavertu M, Buschmann MD. Enhanced gene delivery mediated by low molecular weight chitosan/DNA complexes: Effect of pH and serum. Mol. Biotechnol. 46: 182–196 (2010)

    Article  CAS  Google Scholar 

  19. Lynch I, Dawson KA. Protein-nanoparticle interactions. Nanotoday 3: 40–47 (2008)

    CAS  Google Scholar 

  20. Lynch I, Salvati A, Dawson KA. Protein-nanoparticle interactions: What does the cell see? Nat. Nanotechnol. 4: 546–547 (2009)

    Article  CAS  Google Scholar 

  21. Huang M, Khor E, Lim LY. Uptake and cytotoxicity of chitosan molecules and nanoparticles: Effects of molecular weight and degree of deacetylation. Pharm. Res. 21: 344–353 (2004)

    Article  CAS  Google Scholar 

  22. Amiji MM, Qaqish RB. Synthesis of a fluorescent chitosan derivative and its application for the study of chitosan-mucin interactions. Carbohyd. Polym. 38: 99–107 (1999)

    Article  Google Scholar 

  23. Garrett DA, Failla ML, Sarama RJ. Development of an in vitro digestion method to assess carotenoid bioavailability from meals. J. Agr. Food Chem. 47: 4301–4309 (1999)

    Article  CAS  Google Scholar 

  24. Shim S, Kwon H. Assessing absorbability of bioactive components in aloe using in vitro digestion model with human intestinal cell. J. Food Biochem. 34: 425–438 (2010)

    Article  CAS  Google Scholar 

  25. Bodmeier R, Chen H, Paeratakul O. A novel approach to the oral delivery of micro- or nanoparticles. Pharm. Res. 6: 413–417 (1989)

    Article  CAS  Google Scholar 

  26. Huang M, Ma Z, Khor E, Lim LY. Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm. Res. 19: 1488–1494 (2002)

    Article  CAS  Google Scholar 

  27. Hong SS, Yoo HJ, Li H, Chung SJ, Kim DD, Shim CK. Effect of agitation on the in vitro permeability of xenobiotics across Caco-2 cell monolayers. J. Korean Pharm. Sci. 35: 111–116 (2005)

    CAS  Google Scholar 

  28. Lakeram M, Lockley DJ, Pendlington R, Forbes B. Optimisation of the Caco-2 permeability assay using experimental design methodology. Pharm. Res. 25: 1544–1551 (2008)

    Article  CAS  Google Scholar 

  29. Guibal E, Milot C, Roussy J. Influence of hydrolysis mechanisms on molybdate sorption isotherms using chitosan. Separ. Sci. Technol. 35: 1021–1038 (2000)

    Article  CAS  Google Scholar 

  30. Peng ZG, Hidajat K, Uddin MS. Adsorption of bovine serum albumin on nanosized magnetic particles. J. Colloid Interf. Sci. 271: 277–283 (2004)

    Article  CAS  Google Scholar 

  31. Rezwan K, Studart A, Voros J, Gauckler L. Change of potential of biocompatible colloidal oxide particles upon adsorption of bovine serum albumin and lysozyme. J. Phys. Chem. B. 109: 14469–14474 (2005)

    Article  CAS  Google Scholar 

  32. Vårum KM, Myhr MM, Hjerde RJN, Smidsrød O. In vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohyd. Res. 299: 99–101 (1997)

    Article  Google Scholar 

  33. Klockars M, Reitamo S. Tissue distribution of lysozyme in man. J. Histochem. Cytochem. 23: 932–940 (1975)

    Article  CAS  Google Scholar 

  34. Mir MA. Lysozyme: A brief review. Postgrad. Med. J. 53: 257–259 (1977)

    Article  CAS  Google Scholar 

  35. Peeters T, Vantrappen G. The paneth cell: A source of intestinal lysozyme. Gut 16: 553–558 (1975)

    Article  CAS  Google Scholar 

  36. Ma Z, Yeoh HH, Lim LY. Formulation pH modulates the interaction of insulin with chitosan nanoparticles. J. Pharm. Sci. 91: 1396–1404 (2002)

    Article  CAS  Google Scholar 

  37. Sadeghi AMM, Dorkoosh FA, Avadi MR, Weinhold M, Bayat A, Delie F, Gurny R, Larijani B, Rafiee-Tehrani M, Junginger HE. Permeation enhancer effect of chitosan and chitosan derivatives: Comparison of formulations as soluble polymers and nanoparticulate systems on insulin absorption in Caco-2 cells. Eur. J. Pharm. Biopharm. 70: 270–278 (2008)

    Article  CAS  Google Scholar 

  38. Burton W, Nugent K, Slattery T, Summers B, Snyder L. Separation of proteins by reversed-phase high-performance liquid chromatography: I. Optimizing the column. J. Chromatogr. 443: 363–379 (1988)

    Article  CAS  Google Scholar 

  39. Yoon JY, Kim JH, Kim WS. The relationship of interaction forces in the protein adsorption onto polymeric microspheres. Colloid. Surface A. 153: 413–419 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoonjeong Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Ko, S., Kim, H. et al. Integrity and cell-monolayer permeability of chitosan nanoparticles in simulated gastrointestinal fluids. Food Sci Biotechnol 20, 1033 (2011). https://doi.org/10.1007/s10068-011-0141-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10068-011-0141-3

Keywords

Navigation