Skip to main content
Log in

Structural characteristics, fluorescence quenching, and antioxidant activity of the arabinogalactan protein-rich fraction from senna (Cassia angustifolia) leaves

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Senna (Cassia angustifolia) is widely used in Indian folk medicine for the prevention of various disorders. Herein, we have demonstrated that water extracted arabinogalactan protein (AGP) rich fraction possesses strong antioxidative activity. The AGP rich fraction was analyzed using chemical, chromatographic, and spectroscopic methods. Effect of water extracted polymers on bovine serum albumin spectrum was determined using excitation wavelength of 282 nm. The antioxidant capacity of this fraction was studied by ferric reducing antioxidant power (FRAP) and DPPH radical assays. This polymeric fraction, ≥88% of which gets precipitated with Yariv reagent, consisted mainly of (1→5)-/(1→3,5)-linked α-arabinosyl, (1→3)-/(1→3,6)-linked-galactosyl residues and terminal arabinofuranosyl residues. Its in vitro antioxidant capacity is comparable to that of standard antioxidants. Fluorescence quenching studies furnishes evidence for the interaction of the arabinogalactan protein with bovine serum albumin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Finkel T, Holbrook NJ. Oxidants, oxidative stress, and the biology of aging. Nature 408: 239–247 (2000)

    Article  CAS  Google Scholar 

  2. Liu Z, Lin H, Ye S, Liu QY, Meng Z, Zhang C, Xia Y, Margoliash E, Rao Z, Liu XJ. Remarkably high activities of testicular cytochrome c in destroying reactive oxygen species and in triggering apoptosis. Biochemistry 103: 8965–8970 (2006)

    CAS  Google Scholar 

  3. Mucke L. Alzheimer’s disease. Nature 461: 495–497 (2009)

    Article  Google Scholar 

  4. Lee HB, Yu MR, Yang Y, Jiang Z, Ha H. Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J. Am. Soc. Nephrol. 14: 241–245 (2003)

    Article  Google Scholar 

  5. Paz-Elizur T, Sevilya Z, Leitner-Dagan Y, Elinger D, Roisman L, Livneh Z. DNA repair of oxidative DNA damage in human carcinogenesis: Potential application for cancer risk assessment and prevention. Cancer Lett. 266: 60–72 (2008)

    Article  CAS  Google Scholar 

  6. Schwarz K, Bertelsen G, Nissen LR, Gardner PT, Heinonen MI, Hopia A, Huynh-Ba T, Lambelet P, McPhail D, Skibsted LH, Tijburg L. Investigation of plant extracts for the protection of processed foods against lipid oxidation. Comparison of antioxidant assays based on radical scavenging, lipid oxidation, and analysis of the principal antioxidant compounds. Eur. Food Res. Technol. 212: 319–328 (2001)

    Article  CAS  Google Scholar 

  7. Waltenberger B, Avula B, Ganzera M, Khan IA, Stuppner H, Khan SI. Transport of sennosides and sennidines from Cassia angustifolia and Cassia senna across Caco-2 monolayers-an in vitro model for intestinal absorption. Phytomedicine 15: 373–377 (2008)

    Article  CAS  Google Scholar 

  8. Yadav JP, Arya V, Yadav S, Panghal M, Kumar S, Dhankhar S. Cassia occidentalis L.: A review on its ethnobotany, phytochemical, and pharmacological profile. Fitoterapia 81: 223–230 (2010)

    Article  CAS  Google Scholar 

  9. Berteau O, Mulloy B. Sulfated fucans, fresh perspectives: Structures, functions, and biological functions of sulfated fucans and an overview of enzymes active towards this class of polysaccharides. Glycobiology 13: 29–40 (2003)

    Article  Google Scholar 

  10. Chattopadhyay N, Ghosh T, Sinha S, Chattopadhyay K, Karmakar P, Ray B. Polysaccharides from Turbinaria conoides: Structural features and antioxidant capacity. Food. Chem. 11: 823–829 (2010)

    Article  Google Scholar 

  11. Chattopadhyay N, Nosalova G, Saha S, Bandyopadhyay SS, Fleskova D, Ray B. Structural features and antitussive activity of water extracted polysaccharide from Adhatoda vasica. Carbohyd. Polym. 83: 1970–1974 (2011)

    Article  CAS  Google Scholar 

  12. Ghosh T, Chattopadhyay K, Marschall M, Karmakar P, Mandal P, Ray B. Focus on antivirally active sulfated polysaccharides: From structure-activity analysis to clinical evaluation. Glycobiology 19: 2–15 (2009)

    Article  CAS  Google Scholar 

  13. Song H, Zhang Q, Zhang Z, Wang J. In vitro antioxidant activity of polysaccharides extracted from Bryopsis plumose. Carbohyd. Polym. 80: 1057–1061 (2010)

    Article  CAS  Google Scholar 

  14. Zhang Q, Li N, Zhou G, Lu X, Xu Z, Li Z. In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice. Pharmacol. Res. 48: 151–155 (2003)

    Article  CAS  Google Scholar 

  15. Schultz CR, Johnson KL, Currie G, Bacic A. The classical arabinogalactan protein gene family of Arabidopsis. Cell 12: 1751–1767 (2000)

    CAS  Google Scholar 

  16. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–366 (1956)

    Article  CAS  Google Scholar 

  17. Ahmed A, Labavitch JM. A simplified method for accurate determination of cell wall uronide content. J. Food Biochem. 1: 361–365 (1977)

    Article  CAS  Google Scholar 

  18. Blakeney AB, Harris P, Henry RJ, Bruce AB. A simple rapid preparation of alditol acetates for monosaccharide analysis. Carbohyd. Res. 113: 291–299 (1983)

    Article  CAS  Google Scholar 

  19. York WS, Darvill A, O’Neill M, Stevenson T, Albersheim P. Isolation and characterisation of plant cell walls and cell wall components. Method. Enzymol. 118: 3–40 (1985)

    Article  Google Scholar 

  20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275 (1951)

    CAS  Google Scholar 

  21. Blakeney AB, Stone BA. Methylation of carbohydrates with lithium methylsulphinyl carbanion. Carbohyd. Res. 140: 319–324 (1985)

    Article  CAS  Google Scholar 

  22. Ray B. Polysaccharides from Enteromorpha compressa: Isolation, purification, and structural features. Carbohyd. Polym. 66: 408–416 (2006)

    Article  CAS  Google Scholar 

  23. Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J. Agr. Food Chem. 53: 1841–1856 (2005)

    Article  CAS  Google Scholar 

  24. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem. 239: 70–76 (1996)

    Article  CAS  Google Scholar 

  25. Kacurakova M, Capek P, Sasinkova V, Wellner N, Ebringerova A. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohyd. Polym. 43: 195–203 (2000)

    Article  CAS  Google Scholar 

  26. Capek P, Matulová M, Navarini L, Suggi-Liverani F. Structural features of an arabinogalactan-protein isolated from instant coffee powder of Coffea arabica beans. Carbohyd. Polym. 80: 180–185 (2010)

    Article  CAS  Google Scholar 

  27. Frankel EN, Meyer AS. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J. Sci. Food Agr. 80: 1925–1941 (2000)

    Article  CAS  Google Scholar 

  28. Moon JK, Shibamoto T. Antioxidant assays for plant and food components. J. Agr. Food Chem. 57: 1655–1666 (2009)

    Article  CAS  Google Scholar 

  29. Yuan XP, Wang J, Yao HY, Chen F. Free radical scavenging capacity and inhibitory activity on rat erythrocyte hemolysis of feruloyl oligosaccharides from wheat bran insoluble dietary fiber. LWT-Food Sci. Technol. 38: 877–883 (2005)

    Article  CAS  Google Scholar 

  30. Ou SY, Jackson GM, Jiao X, Chen J, Wu JZ, Huang XS. Protection against oxidative stress in diabetic rats by wheat bran feruloyl oligosaccharides. J. Agr. Food Chem. 55: 3191–3195 (2007)

    Article  CAS  Google Scholar 

  31. Wang J, Zhang Q, Zhang Z, Song H, Li P. Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. Int. J. Biol. Macromol. 46: 6–12 (2010)

    Article  CAS  Google Scholar 

  32. Wang J, Zhang J, Wang X, Zhao B, Wu Y, Yao J. A comparison study on microwave-assisted extraction of Artemisia sphaerocephala polysaccharides with conventional method: Molecule structure and antioxidant activities evaluation. Int. J. Biol. Macromol. 45: 483–492 (2009)

    Article  Google Scholar 

  33. Zhang Q, Li N, Liu X, Zhao Z, Li Z, Xu Z. The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity. Carbohyd. Res. 339: 105–111 (2004)

    Article  CAS  Google Scholar 

  34. Ruperez P, Ahrazem O, Leal A. Potential antioxidant capacity of sulphated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agr. Food Chem. 50: 840–845 (2002)

    Article  CAS  Google Scholar 

  35. Qi H, Zhang Q, Zhao T, Hu R, Zhang K, Li Z. In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta). Bioorg. Med. Chem. 16: 2441–2445 (2006)

    Article  CAS  Google Scholar 

  36. Wang J, Zhang J, Zhao B, Wang X, Wu Y, Yao J. A comparison study on microwave-assisted extraction of Potentilla anserina L. polysaccharides with conventional method: Molecule weight and antioxidant activities evaluation. Carbohyd. Polym. 80: 84–93 (2010)

    Article  CAS  Google Scholar 

  37. Zhang Z, Wang F, Wang X, Liu X, Hou Y, Zhang Q. Extraction of the polysaccharides from five algae and their potential antioxidant activity in vitro. Carbohyd. Polym. 82: 118–121 (2010)

    Article  CAS  Google Scholar 

  38. Je J, Park P, Kim E, Park J, Yoon H, Kim K, Ahn C. Antioxidant activity of enzymatic extracts from the brown seaweed Undaria pinnatifida by electron spin resonance spectroscopy. LWT-Food Sci. Technol. 42: 874–878 (2009)

    Article  CAS  Google Scholar 

  39. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio. Med. 20: 933–956 (1996)

    Article  CAS  Google Scholar 

  40. Peters T. Serum albumin. Adv. Protein Chem. 37: 161–245 (1985)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimalendu Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, S., Bandyopadhyay, S.S., Ghosh, D. et al. Structural characteristics, fluorescence quenching, and antioxidant activity of the arabinogalactan protein-rich fraction from senna (Cassia angustifolia) leaves. Food Sci Biotechnol 20, 1005–1011 (2011). https://doi.org/10.1007/s10068-011-0138-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-011-0138-y

Keywords

Navigation