Skip to main content
Log in

Investigation of citrus flavor adsorption during debittering of grapefruit juice using kinetic modeling and response surface methodology

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Reconstituted grapefruit juice was debittered with XAD-7HP adsorbent resin in batch experiments and the adsorption rate constants of the bitter principal naringin and the volatile flavor compounds α-pinene, β-myrcene, dlimonene, α-terpineol, and β-caryophyllene were determined using a pseudo-first order kinetic model. The highest rate constants were observed consistently for the off-flavor α-terpineol, followed by naringin and the other flavor compounds. The rate constant of each substance was influenced significantly by temperature, ratio of adsorbent/juice, and, except for α-terpineol, by the interaction of both factors (p<0.05). Response surface methodology (RSM) was applied for the development of regression models to predict the adsorption rate constants of all substances. On the basis of the regression models for d-limonene and naringin, a factor combination that minimized loss of flavor and maximized bitterness reduction during the debittering procedure was determined to be a combination of low temperature (13.9°C) and high adsorbent/juice ratio (3.6%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carabasa M, Ibarz A, Garza S, Barbosa-Canovas GV. Removal of dark compounds from clarified fruit juices by adsorption processes. J. Food Eng. 37: 25–41 (1998)

    Article  Google Scholar 

  2. Leggott NL, Shephard GS, Stockenstrom S, Staal E, van Schalkwyk DJ. The reduction of patulin in apple juice by three different types of activated carbon. Food Addit. Contam. 18: 825–829 (2001)

    CAS  Google Scholar 

  3. Johnson RL, Chandler BV. Reduction of bitterness and acidity in grapefruit juice by adsorptive processes. J. Sci. Food Agr. 33: 287–293 (1982)

    Article  Google Scholar 

  4. Johnson RL, Chandler BV. Ion exchange and adsorbent resins for removal of acids and bitter principles from citrus juices. J. Sci. Food Agr. 36: 480–484 (1985)

    Article  Google Scholar 

  5. Chandler BV, Johnson RL. Contacting citrus juice with a cellulose ester adsorbent to remove limonin. U.S. Patent 3,989,854 (1976)

  6. Shaw PE, Baines L, Milnes BA, Agmon G. Commercial debittering processes to upgrade quality of citrus juice products. pp. 120–131. In: Citrus Limonoids: Functional Chemicals in Agriculture and Foods. Berhow MA, Hasegawa S, Manners GD (eds). ACS Symposium Series 758. American Chemical Society, Washington, DC, USA (2000)

    Chapter  Google Scholar 

  7. Fayoux SC, Hernandez RJ, Holland RV. The debittering of navel orange juice using polymeric films. J. Food Sci. 72: E143–E154 (2007)

    Article  Google Scholar 

  8. Kimball DA, Norman SI. Changes in california naval orange juice during commercial debittering. J. Food Sci. 55: 273–274 (1990)

    Article  Google Scholar 

  9. Kimball DA, Norman SI. Processing effects during commercial debittering of california navel orange juice. J. Agr. Food Chem. 38: 1396–1400 (1990)

    Article  Google Scholar 

  10. Hui YH. Orange Juice Processing. pp. 361–390. In: Food Processing: Principles and Applications. Smith JS, Hui YH (eds). Blackwell Publishing Professional, Ames, IA, USA (2004)

    Google Scholar 

  11. US Government. Grapefruit Juice. Code of Federal Regulations Title 21 146. 132 (1981)

  12. Sakano T, Yamamura K, Tamon H, Miyahara M, Okazaki M. Improvement of coffee aroma by removal of pungent volatiles using A-type zeolite. J. Food Sci. 61: 473–476 (1996)

    Article  Google Scholar 

  13. Lucas S, Cocero MJ. Improvement of soluble coffee aroma using an integrated process of supercritical CO2 extraction with selective removal of the pungent volatiles by adsorption on activated carbon. Braz. J. Chem. Eng. 23: 197–203 (2006)

    Article  Google Scholar 

  14. Weinand R. Apple juice stabilization and decolouring by modern adsorption techniques. Flussiges Obst. 63: 495–498 (1996)

    Google Scholar 

  15. Ma SX, Lada MW. Quality fruit juice beverages having extended quality shelf-life and methods of making the same. U.S. Patent 6,534,107 (2003)

  16. Di Cesare LF, Nani R, Bertolo G, Polesello A. Anwendung apolarer sorptionsmittel für die gewinnung von fruchtsaftaroma. teil 2: versuche mit golden delicious apfelsaft (Utilization of apolar sorption devices for the recovery of fruit juice aroma. Part 2: Experiments with golden delicious apple juice). Flussiges Obst. 54: 206–210 (1987)

    Google Scholar 

  17. Ericson AP, Matthews RF, Teixeira AA, Moye HA. Recovery of grapefruit oil constituents from processing waste-water using styrene-divinylbenzene resins. J. Food Sci. 57: 186–189 (1992)

    Article  CAS  Google Scholar 

  18. Shen Z, Mishra V, Imison B, Palmer M, Fairclough R. Use of adsorbent and supercritical carbon dioxide to concentrate flavor compounds from orange oil. J. Agr. Food Chem. 50: 154–160 (2002)

    Article  CAS  Google Scholar 

  19. Subra P, Vega-Bancel A, Reverchon E. Breakthrough curves and adsorption isotherms of terpene mixtures in supercritical carbon dioxide. J. Supercrit. Fluid. 12: 43–57 (1998)

    Article  CAS  Google Scholar 

  20. Tseng DJ, Matthews RF, Gregory JF, Wei CI, Littell RC. Sorption of ethyl butyrate and octanal constituents of orange essence by polymeric adsorbents. J. Food Sci. 58: 801–804 (1993)

    Article  CAS  Google Scholar 

  21. Bitteur S, Rosset R. Use of an octadecyl-bonded silica and a styrene-divinylbenzene copolymer for the recovery of blackcurrant aroma compounds from a food plant waste-water. J. Food Sci. 53: 141–147 (1988)

    Article  CAS  Google Scholar 

  22. Edris AE, Girgis BS, Fadel HHM. Recovery of volatile aroma components from aqueous waste streams using an activated carbon column. Food Chem. 82: 195–202 (2003)

    Article  CAS  Google Scholar 

  23. Ribeiro MHL, Silveira D, Ferreira-Dias S. Selective adsorption of limonin and naringin from orange juice to natural and synthetic adsorbents. Eur. Food Res. Technol. 215: 462–471 (2002)

    Article  CAS  Google Scholar 

  24. Shaw PE, Rouseff RL, Goodner KL, Bazemore R, Nordby HE, Widmer WW. Comparison of headspace gc and electronic sensor techniques for classification of processed orange juices. Lebensm. - Wiss. Technol. 33: 331–334 (2000)

    Article  CAS  Google Scholar 

  25. Sheung KSM, Min S, Sastry SK. Dynamic head space analyses of orange juice flavor compounds and their absorption into packaging materials. J. Food Sci. 69: C549–C556 (2004)

    Article  CAS  Google Scholar 

  26. Lagergren S. Zur theorie der sogenannten adsorption gelöster stoffe (About the theory of the so-called adsorption of soluble substances). K. Sven. Vetenskapsakad. Handl. 24: 1–39 (1889)

    Google Scholar 

  27. Lin J, Wang L. Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Front. Env. Sci. Eng. China 3: 320–324 (2009)

    Article  CAS  Google Scholar 

  28. Jain AK, Gupta VK, Bhatnagar A, Suhas. Utilization of industrial waste products as adsorbents for the removal of dyes. J. Hazard. Mater. 101: 31–42 (2003)

    Article  CAS  Google Scholar 

  29. Derringer G, Suich R. Simultaneous optimization of several response variables. J. Qual. Technol. 12: 214–219 (1980)

    Google Scholar 

  30. Kranz P, Adler P, Kunz B. Sorption of citrus flavour compounds on XAD-7HP resin during the debittering of grapefruit juice. Int. J. Food Sci. Tech. 46: 30–36 (2011)

    Article  CAS  Google Scholar 

  31. Halek GW, Meyers MA. Comparative sorption of citrus flavor compounds by low density polyethylene. Packag. Technol. Sci. 2: 141–146 (1989)

    Article  Google Scholar 

  32. Scordino M, Di Mauro A, Passerini A, Maccarone E. Adsorption of flavonoids on resins: Hesperidin. J. Agr. Food Chem. 51: 6998–7004 (2003)

    Article  CAS  Google Scholar 

  33. Scordino M, Di Mauro A, Passerini A, Maccarone E. Adsorption of flavonoids on resins: Cyanidin 3-glucoside. J. Agr. Food Chem. 52: 1965–1972 (2004)

    Article  CAS  Google Scholar 

  34. Kammerer DR, Saleh ZS, Carle R, Stanley RA. Adsorptive recovery of phenolic compounds from apple juice. Eur. Food Res. Technol. 224: 605–613 (2007)

    Article  CAS  Google Scholar 

  35. Collado IG, Hanson JR, Macias-Sanchez AJ. Recent advances in the chemistry of caryophyllene. Nat. Prod. Rep. 15: 187–204 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kranz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kranz, P., Adler, P. & Kunz, B. Investigation of citrus flavor adsorption during debittering of grapefruit juice using kinetic modeling and response surface methodology. Food Sci Biotechnol 20, 715–724 (2011). https://doi.org/10.1007/s10068-011-0101-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-011-0101-y

Keywords

Navigation