Advertisement

Food Science and Biotechnology

, Volume 20, Issue 3, pp 665–670 | Cite as

Deep-sea water supplementation and swimming exercise improves bone metabolism in growing rats fed a high-fat diet

  • Junyong Kang
  • Daekeun Kwon
  • Jaeyong Park
  • Young-Oh Shin
  • Jeong-Beom Lee
  • Shoji Igawa
  • Youngju SongEmail author
Research Article

Abstract

This study was examined the effects of deepsea water (DSW) supplementation and swimming exercise on bone metabolism in growing male rats. Thirty-two Sprague-Dawley male rats, 6 weeks of age, were randomly divided into high-fat diet sedentary (HS, n=8) or exercised group (HE, n=8) and DSW supplemented sedentary (DS, n=8) or exercised group (DE, n=8), given a high fat diet to all groups for 8 weeks. In the results, serum osteocalcin level of the DS was significantly lower than that of the HS (p<0.01). In addition, femoral bone mineral density (BMD), tibial bone mineral content (BMC), and breaking force of the DS were significantly higher than that of the HS (p<0.05). Furthermore, femoral BMD and tibial weight of DE were significantly higher than that of the HE (p<0.05). These results suggest that drinking deep-sea water and exercise has a crucial role for prevent osteoporosis and increase peak bone mass in growing male rats.

Keywords

deep-sea water swimming bone rat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prestwood KM, Raisz LG. Prevention and treatment of osteoporosis. Clin. Cornerstone 2: 34–44 (2000)CrossRefGoogle Scholar
  2. 2.
    Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW. Relationship of obesity with osteoporosis. J. Clin. Endocr. Metab. 92: 1640–1646 (2007)CrossRefGoogle Scholar
  3. 3.
    Weiler HA, Janzen L, Green K, Grabowski J, Seshia MM, Yuen KC. Percentage body fat and bone mass in healthy Canadian females 10 to 19 years of age. Bone 27: 203–207 (2000)CrossRefGoogle Scholar
  4. 4.
    Leonard MB, Shults J, Wilson BA, Tershakovec AM, Zemel BS. Obesity during childhood and adolescence augments bone mass and bone dimensions. Am. J. Clin. Nutr. 80: 514–523 (2004)Google Scholar
  5. 5.
    Chan G, Chen CT. Musculoskeletal effects of obesity. Curr. Opin. Pediatr. 21: 65–70 (2009)CrossRefGoogle Scholar
  6. 6.
    Yamaguchi M. β-Alanyl-l-histidinato zinc and bone resorption. Gen. Pharmacol. 26: 1179–1183 (1994)Google Scholar
  7. 7.
    Yamaguchi M, Oishi H, Suketa Y. Stimulatory effect of zinc on bone formation in tissue culture. Biochem. Pharmacol. 36: 4007–4012 (1987)CrossRefGoogle Scholar
  8. 8.
    Rude RK. Magnesium deficiency: A heterogeneous cause of disease in humans. J. Bone Miner. Res. 13: 749–758 (1998)CrossRefGoogle Scholar
  9. 9.
    Rude RK, Gruber HE. Magnesium deficiency and osteoporosis: Animal and human observations. J. Nutr. Biochem. 15: 710–716 (2004)CrossRefGoogle Scholar
  10. 10.
    Rude RK, Kirchen ME, Gruber HE, Meyer MH, Luck JS, Crawford DL. Chronic dietary-induced magnesium deficiency alters bone and mineral homeostasis in the rat. Magnesium Res. 12: 257–267 (1999)Google Scholar
  11. 11.
    Dawson-Hughes B, Dallal GE, Krall EA, Sadowski L, Sahyoun N, Tanenbaum S. A controlled trial of the effect of calcium supplementation on bone density in postmenopausal women. New Engl. J. Med. 323: 878–883 (1990)CrossRefGoogle Scholar
  12. 12.
    Cumming RG, Nevitt MC. Calcium for prevention for osteoporotic fractures in postmenopausal women. J. Miner. Res. 12: 132–1329 (1997)Google Scholar
  13. 13.
    Nieves JW, Komar L, Cosman F, Lindsay R. Calcium potentiates the effect of estrogen and calcitonin on bone mass: Review and analysis. Am. J. Clin. Nutr. 67: 18–24 (1998)Google Scholar
  14. 14.
    Bogden JD, Kemp FW, Huang AE, Shapses SA, Ambia-Sobhan H, Jagpal S, Brown IL, Birkett AM. Bone mineral density and content during weight cycling in female rats: Effects of dietary amylaseresistant starch. Nutr. Metab. 26: 5–34 (2008)Google Scholar
  15. 15.
    Hu JF, Zhao XH, Jia JB, Parpia B, Campbell TC. Dietary calcium and bone density among middle-aged and elderly women in China. Am. J. Clin. Nutr. 58: 219–227 (1993)Google Scholar
  16. 16.
    Pastoor FJ, Opitz R, Van’t Klooster AT, Beynen AC. Dietary calcium chloride vs. calcium carbonate reduces urinary pH and phosphorus concentration, improves bone mineralization, and depress kidney calcium level in cats. J. Nutr. 124: 2212–2222 (1994)Google Scholar
  17. 17.
    Katsuda S, Yasukawa T, Nakagawa K, Miyake M, Yamasaki M, Katahira K, Mohri M, Shimizu T, Hazama A. Deep-sea water improves cardiovascular hemodynamics in Kurosawa and Kusanagi-hypercholesterolemic (KHC) rabbits. Biol. Pharm. Bull. 31: 38–44 (2008)CrossRefGoogle Scholar
  18. 18.
    Yoshioka S, Hamada A, Cui T, Yokota J, Yamamoto S, Kusunose M, Miyamura M, Kyotani S, Kaneda R, Tsutsui Y, Odani K, Odani I, Nishioka Y. Pharmacological activity of deep-sea water: Examination of hyperlipemia prevention and medical treatment effect. Biol. Pharm. Bull. 26: 1552–1559 (2003)CrossRefGoogle Scholar
  19. 19.
    Miyamura M, Yoshioka S, Hamada A, Takuma D, Yokota J, Kusunose M, Kyotani S, Kawakita H, Odani K, Tsutsui Y, Nishioka Y. Difference between deep sea water and surface sea water in the preventive effect of atherosclerosis. Biol. Pharm. Bull. 27: 1784–1787 (2004)CrossRefGoogle Scholar
  20. 20.
    Snyder A, Zierath JR, Hawley JA, Sleeper MD, Craig BW. The effects of exercise mode, swimming vs. running, upon bone growth in the rapidly growing female rat. Mech. Ageing Dev. 66: 59–69 (1992)CrossRefGoogle Scholar
  21. 21.
    Cassell C, Benedict M, Specker B. Bone mineral density in elite 7 to 9-yr-old female gymnasts and swimmers. Med. Sci. Sport. Exer. 28: 1243–1246 (1996)Google Scholar
  22. 22.
    Siris E, Adachi JD, Lu Y, Fuerst T, Crans GG, Wong M, Harper KD, Genant HK. Effects of raloxifene on fracture severity in postmenopausal women with osteoporosis: Results from the MORE study. Multiple Outcomes of Raloxifene Evaluation. Osteoporosis Int. 13: 907–913 (2002)CrossRefGoogle Scholar
  23. 23.
    Kwon DK, Hwang KH, Kim YK, Lee KH, Kang HY, Song YJ. Effect of swimming training on immune function of growing rats fed a high-fat diet. J. Hum. Eviron. Syst. 8: 13–18 (2005)CrossRefGoogle Scholar
  24. 24.
    Power MJ, Fottrell PF. Osteocalcin: Diagnostic methods and clinical applications. Crit. Rev. Cl. Lab. Sci. 28: 287–335 (1991)CrossRefGoogle Scholar
  25. 25.
    Camacho P, Kleerekoper M. Biochemical markers of bone turnover. pp. 126–132. In: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Fravus MJ (ed). 6th ed. ASBMR, Washington, DC, USA (2006)Google Scholar
  26. 26.
    Bowen J, Noakes M, Clifton PM. A high dairy protein, highcalcium diet minimizes bone turnover in overweight adults during weight loss. J. Nutr. 134: 568–573 (2003)Google Scholar
  27. 27.
    Toba Y, Kajita Y, Masuyama R, Takada Y, Suzuki K, Aoe S. Dietary magnesium supplementation affected bone metabolism and dynamic strength of bone in ovariectomized rats. J. Nutr. 130: 216–220 (2000)Google Scholar
  28. 28.
    Dimai HP, Porta S, Wirnsberger G, Lindschinger M, Pamperl I, Dobnig H, Wilders-Truschnig M, Lau KH. Daily oral magnesium supplementation suppresses bone turnover in young adult males. J. Clin. Endocr. Metab. 83: 2742–2748 (1998)CrossRefGoogle Scholar
  29. 29.
    Reginster JY, Strause L, Deroisy R, Lecart MP, Saltman P, Franchimont P. Preliminary report of decreased serum magnesium in postmenopausal osteoporosis. Magnesium 8: 106–109 (1989)Google Scholar
  30. 30.
    Fatemi S, Ryzen E, Flores J, Endres DB, Rude RK. Effect of experimental human magnesium depletion on parathyroid hormone secretion and 1,25-dihydroxyvitamin D metabolism. J. Clin. Endocr. Metab. 73: 1067–1072 (1991)CrossRefGoogle Scholar
  31. 31.
    Clark I. Relation of magnesium ions to calcium and phosphate absorption. Nature 207: 982 (1965)CrossRefGoogle Scholar
  32. 32.
    Clark I, Belanger L. The effect of alterations in dietary magnesium on calcium, phosphate, and skeletal metabolism. Calcified. Tiss. Res. 1: 204–218 (1967)CrossRefGoogle Scholar
  33. 33.
    Creedon A, Cashman KD. The effect of calcium intake on bone composition and bone resorption in young growing rats. Brit. J. Nutr. 86: 453–459 (2001)CrossRefGoogle Scholar
  34. 34.
    Reid IR, Ames RW, Evans MC, Gamble GD, Sharpe SJ. Effect of calcium supplementation on bone loss in postmenopausal women. New Engl. J. Med. 328: 460–464 (1993)CrossRefGoogle Scholar
  35. 35.
    Kim CS, Nakajima D, Yang CY, Oh TW, Igawa S, Miyazaki M, Fukuoka H, Ohta F. Prolonged swimming exercise training induces hypophosphatemic osteopenia in stroke-prone spontaneously hypertensive rats (SHRSP). J. Physiol. Anthropol. Appl. Hum. Sci. 19: 271–277 (2000)CrossRefGoogle Scholar
  36. 36.
    Kato K, Takada Y, Matsuyama H, Kawasaki Y, Aoe S, Yano H, Toba Y. Milk calcium taken with cheese increases bone mineral density and bone strength in growing rats. Biosci. Biotech. Bioch. 66: 2342–2346 (2002)CrossRefGoogle Scholar
  37. 37.
    Takada Y, Matsuyama H, Kato K, Kobayashi N, Yamamura J, Yahiro M, Aoe S. Milk whey protein enhances the bone breaking force in ovariectomized rats. Nutr. Res. 17: 1709–1720 (1997)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Netherlands 2011

Authors and Affiliations

  • Junyong Kang
    • 1
  • Daekeun Kwon
    • 1
  • Jaeyong Park
    • 1
  • Young-Oh Shin
    • 2
  • Jeong-Beom Lee
    • 3
  • Shoji Igawa
    • 4
  • Youngju Song
    • 1
    Email author
  1. 1.Laboratory of Sports NutritionSunmoon UniversityAsan, ChungnamKorea
  2. 2.Department of Health Care, Graduate SchoolSoonchunhyang UniversityAsan, ChungnamKorea
  3. 3.Department of Physiology, College of MedicineSoonchunhyang UniversityCheonan, ChungnamKorea
  4. 4.Department of Health CareNippon Sport Science UniversityTokyoJapan

Personalised recommendations