Skip to main content
Log in

α-Galactosidases production by Debaryomyces hansenii UFV-1

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Extracellular and intracellular α-galactosidases were produced by yeast Debaryomyces hansenii UFV-1 grown on different media with several carbon sources. D. hansenii grown in YP-medium (1% yeast extract and 2% peptone) presented maximum cell mass (8.45 mg/mL) after 36 h of cultivation, with lactose as carbon source, followed by sucrose, glucose, raffinose, and galactose. Higher extracellular and intracellular α-galactosidases activities were observed at 48 h of D. hansenii cultivation in YPmedium containing galactose (0.97 and 5.27 U/mL) and lactose (1.28 and 4.88 U/mL), supporting the evidence for the model of induction for the yeast GAL/MEL regulon, such as described in Sacharomyces cereviseae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Encinas JP, Lopez-Diaz TM, Garcia-Lopez ML, Otero A, Moreno B. Yeast populations on Spanish fermented sausages. Meat Sci. 54: 203–208 (2000)

    Article  Google Scholar 

  2. Petersen KM, Westall S, Jespersen L. Microbial succession of Debaryomyces hansenii strains during the production of Danish surface-ripened cheeses. J. Dairy Sci. 85: 478–486 (2002)

    Article  CAS  Google Scholar 

  3. Prista C, Almagro A, Loureiro-Dias MC, Ramos J. Physiological basis for the high salt tolerance of Debaryomyces hansenii. Appl. Environ. Microb. 63: 4005–4009 (1997)

    CAS  Google Scholar 

  4. Durá A, Flores M, Toldrá F. Purification and characterization of a glutaminase from Debaryomyces spp. Int. J. Food Microbiol. 76: 117–126 (2002)

    Article  Google Scholar 

  5. Olensen PT, Stahnke L. The influence of Debaryomyces hansenii and Candida utilis on the aroma formation in garlic spiced fermented sausages and model minces. Meat Sci. 56: 357–368 (2000)

    Article  Google Scholar 

  6. Sorensen BB, Samuelsen H. The combined effects of environmental conditions on lypolysis of pork fat of the meat starter culture organism Staphylococcus xylosus and Debaryomyces hansenii. Int. J. Food Microbiol. 32: 59–71 (1996)

    Article  CAS  Google Scholar 

  7. Parajó JC, Dominguez H, Dominguez JM. Production of xylitol from raw wood hydrolysates by Debaryomyces hansenii NRRLY-7426. Bioprocess Eng. 13: 125–131 (1995)

    Article  Google Scholar 

  8. Roseiro JC, Peito MA, Amaral-Collaço MT. The effects of the oxygen transfer coefficient and substrate concentration on the xylose fermentation by Debaryomyces hansenii. Arch. Microbiol. 156: 484–490 (1991)

    CAS  Google Scholar 

  9. Viana PA, de Rezende ST, Falkoski DL, Leite TA, José IC, Moreira MA, Guimarães VM. Hydrolysis of oligosaccharides in soybean products by Debaryomyces hansenii UFV-1 α-galactosidases. Food Chem. 103: 331–337 (2007)

    Article  CAS  Google Scholar 

  10. Brasil APR, de Rezende ST, Pelúzio MCG, Guimarães VM. Removal of oligosaccharides in soybean flour and nutritional effects in rats. Food Chem. 118: 251–255 (2010)

    Article  CAS  Google Scholar 

  11. Dey PM, Pridham JB. Biochemistry of α-galactosidase. Adv. Enzymol. 36: 91–130 (1972)

    CAS  Google Scholar 

  12. Linden JC. Immobilized α-galactosidase in the sugar beet industry. Enz. Microb. Tech. 4: 130–136 (1982)

    Article  CAS  Google Scholar 

  13. Clarke JH, Davidson K, Rixon JE, Halstead JR, Fransen MP, Gilbert HJ, Hazlewood GP. A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase, and α-galactosidase. Appl. Microbiol. Biot. 53: 661–667 (2000)

    Article  CAS  Google Scholar 

  14. Ratto M, Siika-aho M, Valkeajarvi A, Viikari L. Enzymatic hydrolysis of isolated and fibre-bound galactoglucomannans from pine wood and pine kraft pulp. Appl. Microbiol. Bio. 40: 449–454 (1993)

    CAS  Google Scholar 

  15. Fuller M, Loveloy M, Brooks DA, Harkin ML, Hopwood JJ, Meikle PJ. Immunoquantification of α-galactosidase: Evaluation for the diagnosis of Fabry disease. Clin. Chem. 50: 1979–1985 (2004)

    Article  CAS  Google Scholar 

  16. Olsson ML, Hill ChA, Vega H, Liu QP, Stroud MR, Valdinocci J, Moon S, Clausen H, Kruskall MS. Globules rouge universelsconversion enzymatique des antigens de groupes sanguins A et B. (Universal red blood cells-enzymatic conversion of blood group A and B antigens.) Transfus. Clin. Biol. 11: 33–39 (2004)

    Article  Google Scholar 

  17. Viana PA, de Rezende ST, Marques VM, Trevizano LM, Passos FML, Oliveira MGA, Bemquerer MP, Oliveira JS, Guimarães VM. Extracelullar α-galactosidase from Debaryomyces hansenii UFV-1 and its use in the hydrolysis of raffinose oligosaccharides. J. Agr. Food Chem. 54: 2385–2391 (2006)

    Article  CAS  Google Scholar 

  18. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254 (1976)

    Article  CAS  Google Scholar 

  19. Laemmli UK. Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 227: 680–683 (1970)

    Article  CAS  Google Scholar 

  20. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. P. Natl. Acad. Sci. USA 76: 4350–4354 (1979)

    Article  CAS  Google Scholar 

  21. Turakainen H, Aho S, Korhola M. Mel gene polymorphism in the genus Saccharomyces. Appl. Environ. Microb. 59: 2622–2630 (1993)

    CAS  Google Scholar 

  22. Melcher K, Xu HE. Gal80-Gal80 interaction on adjacent Gal4p binding sites is required for complete Gal gene repression. EMBO J. 20: 841–851 (2001)

    Article  CAS  Google Scholar 

  23. Lagunas R. Sugar transport in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 104: 229–242 (1993)

    Article  CAS  Google Scholar 

  24. Reifenberger E, Boles E, Ciriacy M. Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur. J. Biochem. 245: 324–333 (1997)

    Article  CAS  Google Scholar 

  25. Stambuk BU, Silva MA, Panek AD, Araújo PS. Active α-glucoside transport in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 170: 105–110 (1999)

    CAS  Google Scholar 

  26. Han EK, Cotty F, Sottas C, Jiang H, Michels CA. Characterization of AGT1 encoding a general α-glucoside transporter from Saccharomyces. Mol. Microbiol. 17: 1093–1107 (1995)

    Article  CAS  Google Scholar 

  27. Cheng Q, Michels CA. MAL11 and MAL61 encode the inducible high-affinity maltose transporters of Saccharomyces cerevisiae. J. Bacteriol. 173: 1817–1820 (1991)

    CAS  Google Scholar 

  28. Turakainen H, Hankaanpaa M, Korhola M, Aho S. Characterization of MEL genes in the genus Zygosaccharomyces. Yeast 10: 733–745 (1994)

    Article  CAS  Google Scholar 

  29. Oda Y, Tonomura K. α-Galactosidase from the yeast Torulaspora delbrueckii IFO 1255. J. Appl. Bacteriol. 80: 203–208 (1996)

    CAS  Google Scholar 

  30. Yoshida S, Tan CH, Shimokawa T, Turakainen H, Kusakabe I. Substrate specificities of α-galactosidases from yeasts. Biosci. Biotech. Bioch. 61: 359–361 (1997)

    Article  CAS  Google Scholar 

  31. Elshafei AM, Foda MS, Abdel-Mobde E, Ali NH. Optimization of α-galactosidase production in Streptomyces erythrus. Acta Microbiol. Pol. 50: 53–63 (2001)

    CAS  Google Scholar 

  32. Lazo PS, Ochoa AG, Gascón S. α-Galactosidase from Saccharomyces carlsbergensis: Cellular localization and purification of the external enzyme. Euro. J. Biochem. 77: 375–382 (1977)

    Article  CAS  Google Scholar 

  33. Floréz IG, Lazo PS, Ochoa AG, Gascón S. The specificity of induction of α-galactosidase from Saccharomyces carlsbergensis. Biochim. Biophys. Acta 674: 71–77 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pollyanna Amaral Viana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viana, P.A., de Rezende, S.T., Passos, F.M.L. et al. α-Galactosidases production by Debaryomyces hansenii UFV-1. Food Sci Biotechnol 20, 601–606 (2011). https://doi.org/10.1007/s10068-011-0085-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-011-0085-7

Keywords

Navigation