Skip to main content

Antioxidant activity of the differentially processed seeds of Jack bean (Canavalia ensiformis L. DC)


Antioxidant activity of 70% acetone extracts of raw and processed seeds of Jack bean (Canavalia ensiformis L. DC) was evaluated by various in vitro antioxidant assays, including total antioxidant, free radical scavenging, reducing power, metal ion chelating, β-carotene/linoleic acid bleaching, and antihemolytic activities. The total phenolics and tannin contents were higher in the extract of seeds processed by autoclaving with 1% ash solution (3.2 and 1.6 g/100 g extract, respectively). In general, all the extracts of processed seeds exhibited higher activity in various antioxidant systems, when compared to raw seeds but significant differences were noticed between processing methods. The extract of seeds autoclaved with 1% sugar solution showed higher DPPH radical scavenging activity (IC50 10.6 mg/mL). Interestingly, the extract of dry heated seeds registered higher inhibition of hemolysis (76.1%) compared to standards butylated hydroxyanisole (BHA) (66.2%) and α-tocopherol (59.3%) at the concentration of 500 μg/mL.

This is a preview of subscription content, access via your institution.


  1. 1.

    Yen GC, Duh PD. Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J. Agr. Food Chem. 42: 629–632 (1994)

    Article  CAS  Google Scholar 

  2. 2.

    Bhathena SJ, Velasquez MT. Beneficial role of dietary phytoestrogens in obesity and diabetes. Am. J. Clin. Nutr. 76: 1191–1201 (2002)

    CAS  Google Scholar 

  3. 3.

    Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 113(suppl. 9B): 71S–88S (2002)

    Article  CAS  Google Scholar 

  4. 4.

    Siddhuraju P, Becker K. Comparative nutritional evaluation of differentially processed mucuna seeds (Mucuna pruriens (L.) DC. Var. utilis (Wall ex Wight) Baker ex Burck) on growth performance, feed utilization, and body composition in Nile tilapia (Oreochromis niloticus L). Aquac. Res. 34: 487–500 (2003)

    Article  CAS  Google Scholar 

  5. 5.

    Agbede O, Aletor A. Studies of the chemical composition and protein quality evaluation of differently processed Canavalia ensiformis and Mucuna pruriens seed flours. J. Food Compos. Anal. 18: 89–103 (2005)

    Article  CAS  Google Scholar 

  6. 6.

    Udedibie ABI, Carlini CR. Questions and answers to edibility problem of the Canavalia ensiformis seeds — A review. Anim. Feed Sci. Tech. 74: 95–106 (1998)

    Article  CAS  Google Scholar 

  7. 7.

    Leoân A, Carre B, Larbier M, Lim F, Ladjali T, Picard M. Amino acids and starch digestibility and true metabolizable energy content of raw and extruded Jack beans (Canavalia ensiformis) in adult cockerels. Ann. Zootech. 39: 53–61 (1990)

    Article  Google Scholar 

  8. 8.

    Fagbenro OA, Adeparusi EO, Jimoh WA. Evaluation and nutrient quality of detoxified Jackbean seeds, cooked in distilled water or trona solution, as a substitute for soybean meal in nile tilapia, Oreochromis niloticus, diets. J. Appl. Aquac. 19: 83–100 (2007)

    Article  Google Scholar 

  9. 9.

    Siddhuraju R, Becker K. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic orgins of Drumstick tree (Moringa olifera Lam.) leaves. J. Agr. Food Chem. 51: 2144–2155 (2003)

    Article  CAS  Google Scholar 

  10. 10.

    Pulido R, Bravo L, Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agr. Food Chem. 48: 3396–3402 (2000)

    Article  CAS  Google Scholar 

  11. 11.

    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231–1237 (1999)

    Article  CAS  Google Scholar 

  12. 12.

    Dinis TCP, Madeira VMC, Almeida LM. Action of phenolic derivatives (acetoaminophen, salycilate, and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315: 161–169 (1994)

    Article  CAS  Google Scholar 

  13. 13.

    Prieto P, Pineda M, Aguilar M, Spectophotometric quantitative of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 269: 337–341 (1999)

    Article  CAS  Google Scholar 

  14. 14.

    Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276–277 (1971)

    Article  CAS  Google Scholar 

  15. 15.

    Sreejayan N, Rao MNA. Nitric oxide scavenging by curcuminoids. J. Pharm. Pharmacol. 49: 105–107 (1997)

    Article  CAS  Google Scholar 

  16. 16.

    Klein SM, Cohen G, Cederbaum AI. Production of formaldehyde during metabolism of dimethyl sulphoxide by hydroxyl radical generating system. Biochemistry 20: 6006–6012 (1991)

    Article  Google Scholar 

  17. 17.

    Blios MS. Antioxidants determination by the use of a stable free radical. Nature 26: 1199–1200 (1958)

    Article  Google Scholar 

  18. 18.

    Taga MS, Miller EE, Pratt DE. Chia seeds as a source of natural lipid antioxidants. J. Am. Oil Chem. Soc. 61: 928–931 (1984)

    Article  CAS  Google Scholar 

  19. 19.

    Naim M, Gestener B, Bondi A, Birk Y. Antioxidant and antihemolytic activities of soyabean isoflavones. J. Agr. Food Chem. 24: 1174–1177 (1976)

    Article  CAS  Google Scholar 

  20. 20.

    Xu B, Chang SKC. Effect of soaking, boiling, and steaming on total phenolic content and antioxidant activities of cool season food legumes. Food Chem. 110: 1–13 (2008)

    Article  CAS  Google Scholar 

  21. 21.

    Siddhuraju P. The antioxidant activity and free radical-scavenging capacity of phenolics of raw and dry heated moth bean [(Vigna aconitifolia) (Jacq.) Marechal] seed extracts. Food Chem. 99: 149–157 (2006)

    Article  CAS  Google Scholar 

  22. 22.

    Sanchez-Moreno C. Methods used to evaluate the free radicalscavenging activity in foods and biological system. Food. Sci. Technol. Int. 8: 121–137 (2002)

    CAS  Google Scholar 

  23. 23.

    Chew YL, Goh JK, Lim YY. Assessment of in vitro antioxidant capacity and polyphenolic composition of selected medicinal herbs from Leguminosae family in Peninsular Malaysia. Food Chem. 116: 13–18 (2009)

    Article  CAS  Google Scholar 

  24. 24.

    Gülçin I, Beydemir S, Alici HA, Elmasta M, Büyükokuroglu ME. In vitro antioxidant properties of morphine. Pharmacol. Res. 49: 59–66 (2004)

    Article  Google Scholar 

  25. 25.

    Loo AY, Jain K, Darah I. Antioxidant activity of compounds isolated from the pyroligneous acid, Rhizophora apiculata. Food Chem. 107: 1151–1160 (2008)

    Article  CAS  Google Scholar 

  26. 26.

    Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Oxford University Press, Oxford, UK. pp. 617–783 (1999)

    Google Scholar 

  27. 27.

    Benavente-Garia O, Castillo J, Marin FR, Ortuno A, DelRio JA. Use and properties of citrus flavonoids. J. Agr. Food Chem. 45: 4505–4515 (1997)

    Article  Google Scholar 

  28. 28.

    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell B. 39: 44–84 (2007)

    Article  CAS  Google Scholar 

  29. 29.

    Yang J, Guo J, Yuan J. In vitro antioxidant properties of rutin. Lebens. -Wiss. Technol. 41: 1060–1066 (2008)

    CAS  Google Scholar 

  30. 30.

    Yen GC, Hsieh PP. Antioxidative activity and scavenging effects on active oxygen of xylose-lysine Maillard reaction products. J. Sci. Food Agr. 67: 415–420 (1995)

    Article  CAS  Google Scholar 

  31. 31.

    Brand-Williams W, Cuvelier ME, Berset E. Use of a free radical method to evaluate antioxidant activity. Lebens. -Wiss. Technol. 28: 25–30 (1995)

    CAS  Google Scholar 

  32. 32.

    Yamauchi R, Miyake N, Inoue H, Kato K. Products formed by peroxyl radical oxidation of β-carotene. J. Agr. Food Chem. 41: 708–713 (1993)

    Article  CAS  Google Scholar 

  33. 33.

    Hamidi H, Tajerzadeh H. Carrier erythrocytes: An overview. Drug Deliv. 10: 9–20 (2003)

    Article  CAS  Google Scholar 

  34. 34.

    Djeridane A, Yousfi M, Nadjemi B, Vidal N, Lesgards JF, Stocker P. Screening of some Algerian medicinal plants for the phenolic compounds and their antioxidant activity. Eur. Food Res. Technol. 224: 801–809 (2006)

    Article  Google Scholar 

  35. 35.

    Chaudhuri S, Banerjee, A, Basu K, Sengupta B, Sengupta PK. Interaction of flavonoid with red blood membrane lipids and proteins: Antioxidant and antihemolytic activity. Int. J. Biol. Macromol. 41: 42–48 (2007)

    Article  CAS  Google Scholar 

  36. 36.

    Manian R, Anusuya N, Siddhuraju P, Manian S. The antioxidant and free radical scavenging potential of two different solvent extracts of Camellia sinensis (L.) O. Kuntz, Ficus bengalensis L., and Ficus racemosa L. Food Chem. 107: 1000–1007 (2008)

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sellamuthu Manian.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sowndhararajan, K., Siddhuraju, P. & Manian, S. Antioxidant activity of the differentially processed seeds of Jack bean (Canavalia ensiformis L. DC). Food Sci Biotechnol 20, 585–591 (2011).

Download citation

Key words

  • Canavalia ensiformis
  • total phenolics
  • legume
  • antioxidant activity
  • antihemolytic